Abstract:
We describe finite simple nonabelian groups in which every maximal subgroup is a solvable or Hall subgroup. We also describe nonabelian composition factors of a finite nonsolvable group with these properties.
Citation:
V. A. Vedernikov, “Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 3, 2013, 71–82; Proc. Steklov Inst. Math. (Suppl.), 285, suppl. 1 (2014), S191–S202
\Bibitem{Ved13}
\by V.~A.~Vedernikov
\paper Finite groups in which every nonsolvable maximal subgroup is a~Hall subgroup
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 3
\pages 71--82
\mathnet{http://mi.mathnet.ru/timm964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3362579}
\elib{https://elibrary.ru/item.asp?id=20234973}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 285
\issue , suppl. 1
\pages S191--S202
\crossref{https://doi.org/10.1134/S0081543814050216}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338337200020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903310146}
Linking options:
https://www.mathnet.ru/eng/timm964
https://www.mathnet.ru/eng/timm/v19/i3/p71
This publication is cited in the following 8 articles:
Z. Fan, Z. Gao, J. Zhao, B. Gao, “Finite groups in which maximal subgroups of Sylow p-subgroups are M-permutable”, Math. Notes, 116:2 (2024), 342–349
E. N. Bazhanova, “Finite groups with solvable or Φ-simple maximal subgroups”, Siberian Math. J., 63:4 (2022), 611–619
E. N. Bazhanova, V. A. Vedernikov, “Finite groups with prescribed Φ-simple maximal subgroups”, Siberian Math. J., 62:6 (2021), 981–993
V. A. Vedernikov, “Nonsolvable finite groups whose all nonsolvable superlocals are hall subgroups”, Siberian Math. J., 61:5 (2020), 778–794
I. Sokhor, “On groups with biprimary subgroups of even order”, Algebra Discrete Math., 23:2 (2017), 312–330
A. N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281–309
N. V. Maslova, “Finite groups with arithmetic restrictions on maximal subgroups”, Algebra and Logic, 54:1 (2015), 65–69
E. N. Demina, N. V. Maslova, “Nonabelian composition factors of a finite group with arithmetic constraints to nonsolvable maximal subgroups”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 64–76