Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 2, Pages 98–108 (Mi timm936)  

This article is cited in 4 scientific papers (total in 4 papers)

Generalized Newton method for linear optimization problems with inequality constraints

A. I. Golikov, Yu. G. Evtushenko

Dorodnitsyn Computing Centre of the Russian Academy of Sciences
Full-text PDF (202 kB) Citations (4)
References:
Abstract: A dual problem of linear programming (LP) is reduced to the unconstrained maximization of a concave piecewise quadratic function for sufficiently large values of a certain parameter. An estimate is given for the threshold value of the parameter starting from which the projection of a given point on the set of solutions of the dual LP problem in dual and auxiliary variables is easily found by means of a single solution of an unconstrained maximization problem. The unconstrained maximization is carried out by the generalized Newton method, which is globally convergent in a finite number of steps. The results of numerical experiments are presented for randomly generated large-scale LP problems.
Keywords: linear programming problem, piecewise quadratic function, unconstrained maximization, generalized Newton method.
Received: 11.02.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 284, Issue 1, Pages 96–107
DOI: https://doi.org/10.1134/S0081543814020096
Bibliographic databases:
Document Type: Article
UDC: 519.854
Language: Russian
Citation: A. I. Golikov, Yu. G. Evtushenko, “Generalized Newton method for linear optimization problems with inequality constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 2, 2013, 98–108; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 96–107
Citation in format AMSBIB
\Bibitem{GolEvt13}
\by A.~I.~Golikov, Yu.~G.~Evtushenko
\paper Generalized Newton method for linear optimization problems with inequality constraints
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 2
\pages 98--108
\mathnet{http://mi.mathnet.ru/timm936}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3363377}
\elib{https://elibrary.ru/item.asp?id=19053972}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 284
\issue , suppl. 1
\pages 96--107
\crossref{https://doi.org/10.1134/S0081543814020096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334277400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898712389}
Linking options:
  • https://www.mathnet.ru/eng/timm936
  • https://www.mathnet.ru/eng/timm/v19/i2/p98
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024