Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 2, Pages 85–97 (Mi timm935)  

This article is cited in 8 scientific papers (total in 8 papers)

Modified Newton-type processes generating Fejér approximations of regularized solutions to nonlinear equations

V. V. Vasinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University
Full-text PDF (208 kB) Citations (8)
References:
Abstract: We investigate a two-stage algorithm for the construction of a regularizing algorithm that solves approximately a nonlinear irregular operator equation. First, the initial equation is regularized by a shift (Lavrent'ev's scheme). To approximate a solution of the regularized equation, we apply modified Newton and Gauss–Newton type methods, in which the derivative of the operator is calculated at a fixed point for all iterations. Convergence theorems for the processes, error estimates, and the Fejer property of iterations are established.
Keywords: irregular operator equations, modified Newton-type method, Fejér approximation.
Received: 11.02.2013
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 284, Issue 1, Pages 145–158
DOI: https://doi.org/10.1134/S0081543814020138
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
Language: Russian
Citation: V. V. Vasin, “Modified Newton-type processes generating Fejér approximations of regularized solutions to nonlinear equations”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 2, 2013, 85–97; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 145–158
Citation in format AMSBIB
\Bibitem{Vas13}
\by V.~V.~Vasin
\paper Modified Newton-type processes generating Fej\'er approximations of regularized solutions to nonlinear equations
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 2
\pages 85--97
\mathnet{http://mi.mathnet.ru/timm935}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3172166}
\elib{https://elibrary.ru/item.asp?id=19053971}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 284
\issue , suppl. 1
\pages 145--158
\crossref{https://doi.org/10.1134/S0081543814020138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334277400013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898751173}
Linking options:
  • https://www.mathnet.ru/eng/timm935
  • https://www.mathnet.ru/eng/timm/v19/i2/p85
  • This publication is cited in the following 8 articles:
    1. V. V. Vasin, “Iterative processes for ill-posed problems with a monotone operator”, Siberian Adv. Math., 29 (2019), 217–229  mathnet  crossref  crossref
    2. V. V. Vasin, A. F. Skurydina, “A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems”, Proc. Steklov Inst. Math. (Suppl.), 301:1 (2018), 173–190  mathnet  mathnet  crossref  crossref  isi
    3. V. S. Shubha, S. George, P. Jidesh, M. E. Shobha, “Finite Dimensional Realization of a Quadratic Convergence Yielding Iterative Regularization Method For Ill-Posed Equations With Monotone Operators”, Appl. Math. Comput., 273 (2016), 1041–1050  crossref  mathscinet  isi  elib  scopus
    4. N. Yaparova, “Method For Temperature Measuring in the Rod With Heat Source Under Uncertain Initial Temperature”, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), IEEE, 2016  isi
    5. N. Yaparova, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2016, 1  crossref
    6. V. V. Vasin, “Modified steepest descent method for nonlinear irregular operator equations”, Dokl. Math., 91:3 (2015), 300  crossref
    7. Vasin V., George S., “An Analysis of Lavrentiev Regularization Method and Newton Type Process for Nonlinear Ill-Posed Problems”, Appl. Math. Comput., 230 (2014), 406–413  crossref  mathscinet  zmath  isi  elib  scopus
    8. V. V. Vasin, E. N. Akimova, A. F. Miniakhmetova, “Iteratsionnye algoritmy nyutonovskogo tipa i ikh prilozheniya k obratnoi zadache gravimetrii”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:3 (2013), 26–37  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :151
    References:66
    First page:5
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025