Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 1, Pages 99–114 (Mi timm903)  

This article is cited in 3 scientific papers (total in 3 papers)

Harmonic wavelets in a multiply connected domain with circular boundaries

G. A. Dubosarskii

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (242 kB) Citations (3)
References:
Abstract: A new approach to the solution of the Schwarz and Dirichlet problems in a domain with circular components of the boundary is proposed. The convergence rate is studied for the series that represent a solution in spaces of Hardy type and converge uniformly for smooth boundary values. Examples of functions for which the constructed series diverge are presented. Harmonic wavelets are constructed such that series in these wavelets converge for all functions from the considered spaces.
Keywords: Schwarz problem, Dirichlet problem, harmonic wavelets, basis in spaces of harmonic functions.
Received: 15.09.2012
Bibliographic databases:
Document Type: Article
UDC: 517.538.2
Language: Russian
Citation: G. A. Dubosarskii, “Harmonic wavelets in a multiply connected domain with circular boundaries”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 1, 2013, 99–114
Citation in format AMSBIB
\Bibitem{Dub13}
\by G.~A.~Dubosarskii
\paper Harmonic wavelets in a~multiply connected domain with circular boundaries
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 1
\pages 99--114
\mathnet{http://mi.mathnet.ru/timm903}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408365}
\elib{https://elibrary.ru/item.asp?id=18839269}
Linking options:
  • https://www.mathnet.ru/eng/timm903
  • https://www.mathnet.ru/eng/timm/v19/i1/p99
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :99
    References:78
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024