Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2013, Volume 19, Number 1, Pages 87–98 (Mi timm902)  

This article is cited in 1 scientific paper (total in 1 paper)

Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect

Yu. F. Dolgiiab, E. V. Koshkina

a Ural Federal University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (195 kB) Citations (1)
References:
Abstract: The problem of optimal stabilization is studied for linear periodic finite-dimensional systems with aftereffect. The class of admissible controls is limited to piecewise constant feedback controls formed at discrete times. It is shown that the problem under investigation is equivalent to a stabilization problem for a linear system of difference equations.
Keywords: optimal stabilization, linear periodic finite-dimensional system of differential equations, aftereffect, feedback control.
Received: 10.09.2012
Bibliographic databases:
Document Type: Article
UDC: 517.929
Language: Russian
Citation: Yu. F. Dolgii, E. V. Koshkin, “Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 1, 2013, 87–98
Citation in format AMSBIB
\Bibitem{DolKos13}
\by Yu.~F.~Dolgii, E.~V.~Koshkin
\paper Optimal stabilization of linear periodic finite-dimensional systems of differential equations with aftereffect
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2013
\vol 19
\issue 1
\pages 87--98
\mathnet{http://mi.mathnet.ru/timm902}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3408364}
\elib{https://elibrary.ru/item.asp?id=18839268}
Linking options:
  • https://www.mathnet.ru/eng/timm902
  • https://www.mathnet.ru/eng/timm/v19/i1/p87
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024