|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 4, Pages 68–79
(Mi timm867)
|
|
|
|
Trigonometric analogs of the Szegő equiconvergence theorem for Fourier–Jacobi series
V. M. Badkovab a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University
Abstract:
Let {Φα,βk(τ)}∞k=0 be an orthonormal system of trigonometric Jacobi polynomials obtained by orthogonalizing the sequence 1,sinτ,cosτ,sin2τ,cos2τ,… by Schmidt method on [0,2π] with a weight φα,β(τ):=(1−cosτ)α+1/2(1+cosτ)β+1/2; sα,βn(F;θ):=∑nk=0ck(φα,β;F)Φα,βk(θ) is n-th Fourier sum of function F in system Φα,βk(τ)}∞k=0; sn(F;θ)=s−1/2,−1/22n(F;θ) is usual Fourier sum. It is proved that if α,β>−1, A:=min{α+1/2,α/2+1/4}, B:=min{β+1/2,β/2+1/4}, ε∈(0,π/2), F is measurable, F(τ)(1−cosτ)A(1+cosτ)B∈L1 and
ε∈(0,π/2) Fφα,β∈L1 and the sum sα,β2n(F;θ) equiconverges with each of sequences sn(F√φα,β;θ)/√φα,β(θ) and sn(Fφα,β;θ)/φα,β(θ) uniformly on intervals [−π+ε,−ε] and [ε,π−ε]. For even function F similar results were obtained by G. Szegő and Ye. A. Pleshchyova.
Keywords:
trigonometric Jacobi polynomials, Fourier sums, equiconvergens.
Received: 10.05.2012
Citation:
V. M. Badkov, “Trigonometric analogs of the Szegő equiconvergence theorem for Fourier–Jacobi series”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 68–79
Linking options:
https://www.mathnet.ru/eng/timm867 https://www.mathnet.ru/eng/timm/v18/i4/p68
|
Statistics & downloads: |
Abstract page: | 362 | Full-text PDF : | 93 | References: | 106 | First page: | 2 |
|