Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 4, Pages 68–79 (Mi timm867)  

Trigonometric analogs of the Szegő equiconvergence theorem for Fourier–Jacobi series

V. M. Badkovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University
References:
Abstract: Let $\{\Phi^{\alpha,\beta}_k(\tau)\}_{k=0}^\infty$ be an orthonormal system of trigonometric Jacobi polynomials obtained by orthogonalizing the sequence $1,\sin\tau,\cos\tau,\sin2\tau,\cos2\tau,\dots$ by Schmidt method on $[0,2\pi]$ with a weight $\varphi^{\alpha,\beta}(\tau):=(1-\cos\tau)^{\alpha+1/2}(1+\cos\tau)^{\beta+1/2}$; $s_n^{\alpha,\beta}(F;\theta):=\sum_{k=0}^nc_k(\varphi^{\alpha,\beta};F)\Phi^{\alpha,\beta}_k(\theta)$ is $n$-th Fourier sum of function $F$ in system $\Phi^{\alpha,\beta}_k(\tau)\}_{k=0}^\infty$; $s_n(F;\theta)=s_{2n}^{-1/2,-1/2}(F;\theta)$ is usual Fourier sum. It is proved that if $\alpha,\beta>-1$, $A:=\min\{\alpha+1/2,\alpha/2+1/4\}$, $B:=\min\{\beta+1/2,\beta/2+1/4\}$, $\varepsilon\in(0,\pi/2)$, $F$ is measurable, $F(\tau)(1-\cos\tau)^A(1+\cos\tau)^B\in L^1$ and $\varepsilon\in(0,\pi/2)$ $F\varphi^{\alpha,\beta}\in L^1$ and the sum $s_{2n}^{\alpha,\beta}(F;\theta)$ equiconverges with each of sequences $s_n(F\sqrt{\varphi^{\alpha,\beta}};\theta)/\sqrt{\varphi^{\alpha,\beta}(\theta)}$ and $s_n(F\varphi^{\alpha,\beta};\theta)/\varphi^{\alpha,\beta}(\theta)$ uniformly on intervals $[-\pi+\varepsilon,-\varepsilon]$ and $[\varepsilon,\pi-\varepsilon]$. For even function $F$ similar results were obtained by G. Szegő and Ye.  A. Pleshchyova.
Keywords: trigonometric Jacobi polynomials, Fourier sums, equiconvergens.
Received: 10.05.2012
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. M. Badkov, “Trigonometric analogs of the Szegő equiconvergence theorem for Fourier–Jacobi series”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 68–79
Citation in format AMSBIB
\Bibitem{Bad12}
\by V.~M.~Badkov
\paper Trigonometric analogs of the Szeg\H o equiconvergence theorem for Fourier--Jacobi series
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 4
\pages 68--79
\mathnet{http://mi.mathnet.ru/timm867}
\elib{https://elibrary.ru/item.asp?id=18126468}
Linking options:
  • https://www.mathnet.ru/eng/timm867
  • https://www.mathnet.ru/eng/timm/v18/i4/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025