Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 4, Pages 80–89 (Mi timm868)  

This article is cited in 4 scientific papers (total in 4 papers)

Upper estimates for the error of approximation of derivatives in a finite element of Hsieh–Clough–Tocher type

N. V. Baidakovaab

a Ural Federal University
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Full-text PDF (188 kB) Citations (4)
References:
Abstract: For a triangle $T$, we obtain upper estimates for the error of approximation of derivatives of a function $f\in W^4M$ by derivatives of a piecewise polynomial function $P_3$ that defines a composite Hsieh–Clough–Tocher element. In the obtained error estimates, the negative influence of the smallest angle $\alpha$ of the triangle $T$ on the error of approximation of derivatives is decreased as compared to most often used classical estimates for noncomposite elements. Contrary to expectations, the behavior of the obtained upper estimates with respect to the angle $\alpha$ turned out to be similar to the estimates for the fifth-order polynomial $\widetilde P_5$ defining a “purely polynomial” (noncomposite) finite element that were found by Yu. N. Subbotin. However, the Hsieh–Clough–Tocher element may have an advantage over the polynomial $\widetilde P_5$, which provides the same smoothness, because the implementation of the finite element method for finding $P_3$ requires 12 free parameters, whereas the implementation of this method for finding $\widetilde P_5$ requires 21 parameters.
Keywords: multidimensional interpolation, finite element method, approximation.
Received: 25.04.2012
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: N. V. Baidakova, “Upper estimates for the error of approximation of derivatives in a finite element of Hsieh–Clough–Tocher type”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 4, 2012, 80–89
Citation in format AMSBIB
\Bibitem{Bai12}
\by N.~V.~Baidakova
\paper Upper estimates for the error of approximation of derivatives in a~finite element of Hsieh--Clough--Tocher type
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 4
\pages 80--89
\mathnet{http://mi.mathnet.ru/timm868}
\elib{https://elibrary.ru/item.asp?id=18126470}
Linking options:
  • https://www.mathnet.ru/eng/timm868
  • https://www.mathnet.ru/eng/timm/v18/i4/p80
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025