Abstract:
Many applied problems reduce to the general geometric problem of finding a point of a linear manifold in a finite-dimensional space that is closest to the origin. There are many specific formulations of this problem, including the search for octahedral and Euclidean projections, i.e., vectors of the linear manifold with smallest octahedral and Euclidean norms. We consider the properties of solutions to the problem of finding points of linear manifolds that are closest to the origin and relations between these solutions under various specifications of the problem. In particular, we study the properties of octahedral and Euclidean projections and analyze the influence on these projections of variation of weight coefficients in the norms.
Keywords:
linear manifold, projections, Euclidean norms, octahedral norms.
Citation:
V. I. Zorkal'tsev, “Octahedral and Euclidean projections of a point to a linear manifold”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 106–118; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 185–197
\Bibitem{Zor12}
\by V.~I.~Zorkal'tsev
\paper Octahedral and Euclidean projections of a~point to a~linear manifold
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 106--118
\mathnet{http://mi.mathnet.ru/timm844}
\elib{https://elibrary.ru/item.asp?id=17937015}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 284
\issue , suppl. 1
\pages 185--197
\crossref{https://doi.org/10.1134/S0081543814020163}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334277400016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898726399}
Linking options:
https://www.mathnet.ru/eng/timm844
https://www.mathnet.ru/eng/timm/v18/i3/p106
This publication is cited in the following 8 articles:
V. I. Zorkaltsev, “Chebyshevskim approksimatsiyam ne nuzhno uslovie Khaara”, Differentsialnye uravneniya i optimalnoe upravlenie, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 196, VINITI RAN, M., 2021, 28–35
V. I. Zorkaltsev, “Chebyshevskie proektsii na lineinoe mnogoobrazie”, Tr. IMM UrO RAN, 26, no. 3, 2020, 44–55
V. I. Zorkaltsev, E. V. Gubii, “Chebyshevskie priblizheniya i approksimatsiya metodom naimenshikh kvadratov”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 33 (2020), 3–19
V. I. Zorkal'tsev, “Convergence of Hölder projections to chebyshev projections”, Comput. Math. Math. Phys., 60:11 (2020), 1810–1822
E. V. Gubii, V. I. Zorkaltsev, S. M. Perzhabinskii, “Chebyshevskie i evklidovy proektsii tochki na lineinoe mnogoobrazie”, UBS, 80 (2019), 6–19
E. V. Prosolupov, G. Sh. Tamasyan, “Complexity estimation for an algorithm of searching for zero of a piecewise linear convex function”, J. Appl. Industr. Math., 12:2 (2018), 325–333
V. I. Zorkal'tsev, “Octahedral projections of a point onto a polyhedron”, Comput. Math. Math. Phys., 58:5 (2018), 813–821
Valery Zorkal'tsev, 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), 2017, 1