Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 106–118 (Mi timm844)  

This article is cited in 8 scientific papers (total in 8 papers)

Octahedral and Euclidean projections of a point to a linear manifold

V. I. Zorkal'tsev

Melentiev Energy Systems Institute, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (194 kB) Citations (8)
References:
Abstract: Many applied problems reduce to the general geometric problem of finding a point of a linear manifold in a finite-dimensional space that is closest to the origin. There are many specific formulations of this problem, including the search for octahedral and Euclidean projections, i.e., vectors of the linear manifold with smallest octahedral and Euclidean norms. We consider the properties of solutions to the problem of finding points of linear manifolds that are closest to the origin and relations between these solutions under various specifications of the problem. In particular, we study the properties of octahedral and Euclidean projections and analyze the influence on these projections of variation of weight coefficients in the norms.
Keywords: linear manifold, projections, Euclidean norms, octahedral norms.
Received: 12.01.2012
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, Volume 284, Issue 1, Pages 185–197
DOI: https://doi.org/10.1134/S0081543814020163
Bibliographic databases:
Document Type: Article
UDC: 519.6+519.85
Language: Russian
Citation: V. I. Zorkal'tsev, “Octahedral and Euclidean projections of a point to a linear manifold”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 106–118; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 185–197
Citation in format AMSBIB
\Bibitem{Zor12}
\by V.~I.~Zorkal'tsev
\paper Octahedral and Euclidean projections of a~point to a~linear manifold
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 106--118
\mathnet{http://mi.mathnet.ru/timm844}
\elib{https://elibrary.ru/item.asp?id=17937015}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2014
\vol 284
\issue , suppl. 1
\pages 185--197
\crossref{https://doi.org/10.1134/S0081543814020163}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000334277400016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898726399}
Linking options:
  • https://www.mathnet.ru/eng/timm844
  • https://www.mathnet.ru/eng/timm/v18/i3/p106
  • This publication is cited in the following 8 articles:
    1. V. I. Zorkaltsev, “Chebyshevskim approksimatsiyam ne nuzhno uslovie Khaara”, Differentsialnye uravneniya i optimalnoe upravlenie, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 196, VINITI RAN, M., 2021, 28–35  mathnet  crossref  elib
    2. V. I. Zorkaltsev, “Chebyshevskie proektsii na lineinoe mnogoobrazie”, Tr. IMM UrO RAN, 26, no. 3, 2020, 44–55  mathnet  crossref  elib
    3. V. I. Zorkaltsev, E. V. Gubii, “Chebyshevskie priblizheniya i approksimatsiya metodom naimenshikh kvadratov”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 33 (2020), 3–19  mathnet  crossref
    4. V. I. Zorkal'tsev, “Convergence of Hölder projections to chebyshev projections”, Comput. Math. Math. Phys., 60:11 (2020), 1810–1822  mathnet  crossref  crossref  isi  elib
    5. E. V. Gubii, V. I. Zorkaltsev, S. M. Perzhabinskii, “Chebyshevskie i evklidovy proektsii tochki na lineinoe mnogoobrazie”, UBS, 80 (2019), 6–19  mathnet  crossref
    6. E. V. Prosolupov, G. Sh. Tamasyan, “Complexity estimation for an algorithm of searching for zero of a piecewise linear convex function”, J. Appl. Industr. Math., 12:2 (2018), 325–333  mathnet  crossref  crossref  elib
    7. V. I. Zorkal'tsev, “Octahedral projections of a point onto a polyhedron”, Comput. Math. Math. Phys., 58:5 (2018), 813–821  mathnet  crossref  crossref  isi  elib
    8. Valery Zorkal'tsev, 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), 2017, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :128
    References:63
    First page:4
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025