Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 3, Pages 99–105 (Mi timm843)  

This article is cited in 17 scientific papers (total in 17 papers)

On finite groups with disconnected prime graph

M. R. Zinov'evaa, V. D. Mazurovb

a Ural Federal University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: All finite simple nonabelian groups that have the same prime graph as a Frobenius group or a 2-Frobenius group are found.
Keywords: finite simple group, prime graph, Frobenius group, 2-Frobenius group.
Received: 20.02.2012
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 283, Issue 1, Pages 139–145
DOI: https://doi.org/10.1134/S0081543813090149
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: M. R. Zinov'eva, V. D. Mazurov, “On finite groups with disconnected prime graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 3, 2012, 99–105; Proc. Steklov Inst. Math. (Suppl.), 283, suppl. 1 (2013), 139–145
Citation in format AMSBIB
\Bibitem{ZinMaz12}
\by M.~R.~Zinov'eva, V.~D.~Mazurov
\paper On finite groups with disconnected prime graph
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 3
\pages 99--105
\mathnet{http://mi.mathnet.ru/timm843}
\elib{https://elibrary.ru/item.asp?id=17937014}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 283
\issue , suppl. 1
\pages 139--145
\crossref{https://doi.org/10.1134/S0081543813090149}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000327079000014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84887589524}
Linking options:
  • https://www.mathnet.ru/eng/timm843
  • https://www.mathnet.ru/eng/timm/v18/i3/p99
  • This publication is cited in the following 17 articles:
    1. Guohua Qian, “Finite groups with non-complete character codegree graphs”, Journal of Algebra, 669 (2025), 75  crossref
    2. Guohua Qian, “Finite Solvable Groups Whose Prime Graphs have Diameter 3”, Acta. Math. Sin.-English Ser., 41:3 (2025), 975  crossref
    3. Andreas Bächle, Ann Kiefer, Sugandha Maheshwary, Ángel del Río, “Gruenberg–Kegel graphs: Cut groups, rational groups and the prime graph question”, Forum Mathematicum, 35:2 (2023), 409  crossref
    4. N. V. Maslova, K. A. Il'enko, “On the Coincidence of Gruenberg–Kegel Graphs of an Almost Simple Group and a Nonsolvable Frobenius Group”, Proc. Steklov Inst. Math. (Suppl.), 317, suppl. 1 (2022), S130–S135  mathnet  crossref  crossref  isi  elib
    5. A. S. Kondrat'ev, N. A. Minigulov, “Finite solvable groups whose Gruenberg-Kegel graphs are isomorphic to the paw”, Tr. IMM UrO RAN, 28, no. 2, 2022, 269–273  mathnet  crossref  mathscinet
    6. Peter J. Cameron, Natalia V. Maslova, “Criterion of unrecognizability of a finite group by its Gruenberg–Kegel graph”, Journal of Algebra, 607 (2022), 186  crossref
    7. I. B. Gorshkov, N. V. Maslova, “Finite almost simple groups whose Gruenberg–Kegel graphs coincide with Gruenberg–Kegel graphs of solvable groups”, Algebra and Logic, 57:2 (2018), 115–129  mathnet  crossref  crossref  isi
    8. A. M. Staroletov, “On recognition of alternating groups by prime graph”, Sib. elektron. matem. izv., 14 (2017), 994–1010  mathnet  crossref
    9. A. Mohammadzadeh, A. R. Moghaddamfar, “Several quantitative characterizations of some specific groups”, Comment. Math. Univ. Carol., 58:1 (2017), 19–34  crossref  mathscinet  zmath  isi  scopus
    10. N. V. Maslova, D. Pagon, “On the realizability of a graph as the Gruenberg–Kegel graph of a finite group”, Sib. elektron. matem. izv., 13 (2016), 89–100  mathnet  crossref
    11. A. S. Kondrat'ev, “Finite groups with given properties of their prime graphs”, Algebra and Logic, 55:1 (2016), 77–82  mathnet  crossref  crossref  isi  elib
    12. A. S. Kondratev, “O konechnykh gruppakh s nebolshim prostym spektrom, II”, Vladikavk. matem. zhurn., 17:2 (2015), 22–31  mathnet
    13. M. R. Zinov'eva, A. S. Kondrat'ev, “Finite almost simple groups with prime graphs all of whose connected components are cliques”, Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 178–188  mathnet  crossref  mathscinet  isi  elib
    14. V. D. Mazurov, “2-Frobenius groups isospectral to the simple group U3(3)”, Siberian Math. J., 56:6 (2015), 1108–1113  mathnet  crossref  crossref  mathscinet  isi  elib
    15. Ali Mahmoudifar, Behrooz Khosravi, “On quasirecognition by prime graph of the simple groups An+(p) and An(p)”, J. Algebra Appl., 14:01 (2015), 1550006  crossref
    16. Alexander Gruber, Thomas Michael Keller, Mark L. Lewis, Keeley Naughton, Benjamin Strasser, “A characterization of the prime graphs of solvable groups”, Journal of Algebra, 442 (2015), 397  crossref
    17. A. L. Gavrilyuk, I. V. Khramtsov, A. S. Kondrat'ev, N. V. Maslova, “On realizability of a graph as the prime graph of a finite group”, Sib. elektron. matem. izv., 11 (2014), 246–257  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:619
    Full-text PDF :214
    References:98
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025