Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2012, Volume 18, Number 2, Pages 179–190 (Mi timm818)  

This article is cited in 1 scientific paper (total in 1 paper)

Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold

V. Yu. Novokshenov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Full-text PDF (324 kB) Citations (1)
References:
Abstract: A classification of solutions of the first and second Painlevé equations corresponding to a special distribution of poles at infinity is considered. The relation between this distribution and singularities of the two-dimensional complex monodromy data manifold used for the parameterization of the solutions is analyzed. It turns out that solutions of the Painlevé equations have no poles in a certain critical sector of the complex plane if and only if their monodromy data lie in the singularity submanifold. Such solutions belong to the so-called class of “truncated” solutions (intégrales tronquée) according to P. Boutroux's classification. It is shown that all known special solutions of the first and second Painlevé equations belong to this class.
Keywords: Painlevé equations, isomonodromic deformations, distribution of poles, special solutions, Padé approximations.
Received: 20.09.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, Volume 281, Issue 1, Pages 105–117
DOI: https://doi.org/10.1134/S0081543813050106
Bibliographic databases:
Document Type: Article
UDC: 517.923+517.928
Language: Russian
Citation: V. Yu. Novokshenov, “Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 179–190; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 105–117
Citation in format AMSBIB
\Bibitem{Nov12}
\by V.~Yu.~Novokshenov
\paper Special solutions of the first and second Painlev\'e equations and singularities of the monodromy data manifold
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 179--190
\mathnet{http://mi.mathnet.ru/timm818}
\elib{https://elibrary.ru/item.asp?id=17736196}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 105--117
\crossref{https://doi.org/10.1134/S0081543813050106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879128440}
Linking options:
  • https://www.mathnet.ru/eng/timm818
  • https://www.mathnet.ru/eng/timm/v18/i2/p179
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :145
    References:51
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024