Abstract:
We study the asymptotic behavior of a solution of the first boundary value problem for a second-order elliptic equation in a nonconvex domain with smooth boundary in the case where the small parameter is a factor at only some of the highest derivatives and the limit equation is an ordinary differential equation. Although the limit equation has the same order as the initial equation, the problem under consideration is singulary perturbed. The asymptotic behavior of a solution of this problem is studied by the method of matched asymptotic expansions
Citation:
E. F. Lelikova, “On the asymptotics of a solution to an equation with a small parameter at some of the highest derivatives”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 170–178; Proc. Steklov Inst. Math. (Suppl.), 281, suppl. 1 (2013), 95–104
\Bibitem{Lel12}
\by E.~F.~Lelikova
\paper On the asymptotics of a~solution to an equation with a~small parameter at some of the highest derivatives
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2012
\vol 18
\issue 2
\pages 170--178
\mathnet{http://mi.mathnet.ru/timm817}
\elib{https://elibrary.ru/item.asp?id=17736195}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2013
\vol 281
\issue , suppl. 1
\pages 95--104
\crossref{https://doi.org/10.1134/S008154381305009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320460300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879137313}
Linking options:
https://www.mathnet.ru/eng/timm817
https://www.mathnet.ru/eng/timm/v18/i2/p170
This publication is cited in the following 2 articles:
D. A. Tursunov, U. Z. Erkebaev, “Asimptoticheskoe razlozhenie resheniya zadachi Dirikhle dlya koltsa s osobennostyu na granitse”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 1(39), 42–52
D. A. Tursunov, U. Z. Erkebaev, “Asimptotika resheniya bisingulyarno vozmuschennoi zadachi Dirikhle v koltse s kvadratichnym rostom na granitse”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:2 (2016), 52–61