Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 4, Pages 53–65 (Mi timm749)  

On finite Alperin $p$-groups with homocyclic commutator subgroup

B. M. Veretennikov

Ural Federal University
References:
Abstract: We study metabelian Alperin groups, i.e., metabelian groups in which every 2-generated subgroup has a cyclic commutator subgroup. It is known that, if the minimum number of generators $d(G)$ of a finite Alperin $p$-group $G$ is $n\geq3$, then $d(G')\leq C_n^2$ for $p\neq3$ and $d(G')\leq C_n^2+C_n^3$ for $p=3$. The first section of the paper deals with finite Alperin $p$-groups $G$ with $d(G)\geq3$ and $p\neq3$ that have a homocyclic commutator subgroup of rank $C_n^2$. In addition, a corollary is deduced for infinite Alperin $p$-groups. In the second section, we prove that, if $G$ is a finite Alperin $3$-group with a homocyclic commutator subgroup $G'$ of rank $C_n^2+C_n^3$, then $G'$ is an elementary abelian group.
Keywords: $p$-group, Alperin group, commutator subgroup, definition of group by means of generators and defining relations.
Received: 05.02.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, Volume 279, Issue 1, Pages 139–151
DOI: https://doi.org/10.1134/S0081543812090118
Bibliographic databases:
Document Type: Article
UDC: 512.54
Language: Russian
Citation: B. M. Veretennikov, “On finite Alperin $p$-groups with homocyclic commutator subgroup”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 53–65; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 139–151
Citation in format AMSBIB
\Bibitem{Ver11}
\by B.~M.~Veretennikov
\paper On finite Alperin $p$-groups with homocyclic commutator subgroup
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 53--65
\mathnet{http://mi.mathnet.ru/timm749}
\elib{https://elibrary.ru/item.asp?id=17870422}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 279
\issue , suppl. 1
\pages 139--151
\crossref{https://doi.org/10.1134/S0081543812090118}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312634700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871342779}
Linking options:
  • https://www.mathnet.ru/eng/timm749
  • https://www.mathnet.ru/eng/timm/v17/i4/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025