Processing math: 100%
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 4, Pages 44–52 (Mi timm748)  

This article is cited in 10 scientific papers (total in 10 papers)

On the heritability of the property Dπ by subgroups

E. P. Vdovina, N. Ch. Manzaevab, D. O. Revina

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
References:
Abstract: For some set of primes π, a subgroup H of a finite group G is called a π-Hall subgroup if all prime divisors of |H| are in π and |G:H| has no prime divisors from π. A group G is said to possess the property Dπ if it has only one class of conjugate maximal π-subgroups or, equivalently, the complete analog of Sylow's theorem for Hall π-subgroups is valid in G. We investigate which subgroups of Dπ-groups inherit the property Dπ.
Keywords: Hall subgroup, property Dπ, finite simple group, Sylow's theorem.
Received: 03.06.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, Volume 279, Issue 1, Pages 130–138
DOI: https://doi.org/10.1134/S0081543812090106
Bibliographic databases:
Document Type: Article
UDC: 512.542.5
Language: Russian
Citation: E. P. Vdovin, N. Ch. Manzaeva, D. O. Revin, “On the heritability of the property Dπ by subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 44–52; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 130–138
Citation in format AMSBIB
\Bibitem{VdoManRev11}
\by E.~P.~Vdovin, N.~Ch.~Manzaeva, D.~O.~Revin
\paper On the heritability of the property $D_\pi$ by subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 44--52
\mathnet{http://mi.mathnet.ru/timm748}
\elib{https://elibrary.ru/item.asp?id=17870421}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 279
\issue , suppl. 1
\pages 130--138
\crossref{https://doi.org/10.1134/S0081543812090106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312634700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871283940}
Linking options:
  • https://www.mathnet.ru/eng/timm748
  • https://www.mathnet.ru/eng/timm/v17/i4/p44
  • This publication is cited in the following 10 articles:
    1. D. O. Revin, V. D. Shepelev, “The Strong $ \pi $-Sylow Theorem for the Groups PSL$ {}_{2}(q) $”, Sib Math J, 65:5 (2024), 1187  crossref
    2. D. O. Revin, V. D. Shepelev, “Silnaya $\pi$-teorema Silova dlya grupp PSL$_2(q)$”, Sib. matem. zhurn., 65:5 (2024), 1011–1021  mathnet  crossref
    3. Wenbin Guo, Danila O. Revin, Evgeny P. Vdovin, “The reduction theorem for relatively maximal subgroups”, Bull. Math. Sci., 12:01 (2022)  crossref
    4. E. P. Vdovin, N. Ch. Manzaeva, D. O. Revin, “On the heritability of the Sylow $\pi$-theorem by subgroups”, Sb. Math., 211:3 (2020), 309–335  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. W. Guo, D. O. Revin, “Maximal and submaximal $\mathfrak X$-subgroups”, Algebra and Logic, 57:1 (2018), 9–28  mathnet  crossref  crossref  isi
    6. Wenbin Guo, Danila O. Revin, “Pronormality and Submaximal $\mathfrak {X}$ X -Subgroups on Finite Groups”, Commun. Math. Stat., 6:3 (2018), 289  crossref
    7. N. Ch. Manzaeva, “Heritability of the property $\mathcal D_\pi$ by overgroups of $\pi$-Hall subgroups in the case where $2\in\pi$”, Algebra and Logic, 53:1 (2014), 17–28  mathnet  crossref  mathscinet  isi
    8. W. Guo, D. O. Revin, “On the class of groups with pronormal Hall $\pi$-subgroups”, Siberian Math. J., 55:3 (2014), 415–427  mathnet  crossref  mathscinet  isi  elib  elib
    9. E. P. Vdovin, D. O. Revin, “On the pronormality of Hall subgroups”, Siberian Math. J., 54:1 (2013), 22–28  mathnet  crossref  mathscinet  isi
    10. N. Ch. Manzaeva, “Reshenie problemy Vilanda dlya sporadicheskikh grupp”, Sib. elektron. matem. izv., 9 (2012), 294–305  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:461
    Full-text PDF :101
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025