Abstract:
For some set of primes π, a subgroup H of a finite group G is called a π-Hall subgroup if all prime divisors of |H| are in π and |G:H| has no prime divisors from π. A group G is said to possess the property Dπ if it has only one class of conjugate maximal π-subgroups or, equivalently, the complete analog of Sylow's theorem for Hall π-subgroups is valid in G. We investigate which subgroups of Dπ-groups inherit the property Dπ.
Keywords:
Hall subgroup, property Dπ, finite simple group, Sylow's theorem.
Citation:
E. P. Vdovin, N. Ch. Manzaeva, D. O. Revin, “On the heritability of the property Dπ by subgroups”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 4, 2011, 44–52; Proc. Steklov Inst. Math. (Suppl.), 279, suppl. 1 (2012), 130–138
\Bibitem{VdoManRev11}
\by E.~P.~Vdovin, N.~Ch.~Manzaeva, D.~O.~Revin
\paper On the heritability of the property $D_\pi$ by subgroups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 4
\pages 44--52
\mathnet{http://mi.mathnet.ru/timm748}
\elib{https://elibrary.ru/item.asp?id=17870421}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 279
\issue , suppl. 1
\pages 130--138
\crossref{https://doi.org/10.1134/S0081543812090106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312634700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871283940}
Linking options:
https://www.mathnet.ru/eng/timm748
https://www.mathnet.ru/eng/timm/v17/i4/p44
This publication is cited in the following 10 articles:
D. O. Revin, V. D. Shepelev, “The Strong $ \pi $-Sylow Theorem for the Groups PSL$ {}_{2}(q) $”, Sib Math J, 65:5 (2024), 1187
D. O. Revin, V. D. Shepelev, “Silnaya $\pi$-teorema Silova dlya grupp PSL$_2(q)$”, Sib. matem. zhurn., 65:5 (2024), 1011–1021
Wenbin Guo, Danila O. Revin, Evgeny P. Vdovin, “The reduction theorem for relatively maximal subgroups”, Bull. Math. Sci., 12:01 (2022)
E. P. Vdovin, N. Ch. Manzaeva, D. O. Revin, “On the heritability of the Sylow $\pi$-theorem by subgroups”, Sb. Math., 211:3 (2020), 309–335
W. Guo, D. O. Revin, “Maximal and submaximal $\mathfrak X$-subgroups”, Algebra and Logic, 57:1 (2018), 9–28
Wenbin Guo, Danila O. Revin, “Pronormality and Submaximal $\mathfrak {X}$ X -Subgroups on Finite Groups”, Commun. Math. Stat., 6:3 (2018), 289
N. Ch. Manzaeva, “Heritability of the property $\mathcal D_\pi$ by overgroups of $\pi$-Hall subgroups in the case where $2\in\pi$”, Algebra and Logic, 53:1 (2014), 17–28
W. Guo, D. O. Revin, “On the class of groups with pronormal Hall $\pi$-subgroups”, Siberian Math. J., 55:3 (2014), 415–427
E. P. Vdovin, D. O. Revin, “On the pronormality of Hall subgroups”, Siberian Math. J., 54:1 (2013), 22–28
N. Ch. Manzaeva, “Reshenie problemy Vilanda dlya sporadicheskikh grupp”, Sib. elektron. matem. izv., 9 (2012), 294–305