Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 3, Pages 136–154 (Mi timm727)  

This article is cited in 3 scientific papers (total in 3 papers)

A version of the Turan problem for positive definite functions of several variables

A. V. Efimov

Ural Federal University
Full-text PDF (267 kB) Citations (3)
References:
Abstract: Let $G_m(\mathbb B)$ be the class of functions of $m$ variables with support in the unit ball $\mathbb B$ centered at the origin of the space $\mathbb R^m$, continuous on the space $\mathbb R^m$, normed by the condition $f(0)=1,$ and having a nonnegative Fourier transform. In this paper, we study the problem of finding the maximum value $\Phi_m(a)$ of normed integrals of functions from the class $G_m(\mathbb B)$ over the sphere $\mathbb S_a$ of radius $a$, $0<a<1$, centered at the origin. It is proved that we may consider spherically symmetric functions only. The existence of an extremal function is proved and a presentation of such a function as the self-convolution of a radial function is obtained. An integral equation is written for a solution of the problem for any $m\ge3$. The values $\Phi_3(a)$ are obtained for $1/3\le a<1$.
Keywords: Turan problem, positive definite functions, multidimensional functions.
Received: 02.02.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, Volume 277, Issue 1, Pages 93–112
DOI: https://doi.org/10.1134/S0081543812050100
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: A. V. Efimov, “A version of the Turan problem for positive definite functions of several variables”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 136–154; Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 93–112
Citation in format AMSBIB
\Bibitem{Efi11}
\by A.~V.~Efimov
\paper A version of the Turan problem for positive definite functions of several variables
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 3
\pages 136--154
\mathnet{http://mi.mathnet.ru/timm727}
\elib{https://elibrary.ru/item.asp?id=17870127}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 277
\issue , suppl. 1
\pages 93--112
\crossref{https://doi.org/10.1134/S0081543812050100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305909000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863585374}
Linking options:
  • https://www.mathnet.ru/eng/timm727
  • https://www.mathnet.ru/eng/timm/v17/i3/p136
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:413
    Full-text PDF :156
    References:66
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024