Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2011, Volume 17, Number 3, Pages 122–135 (Mi timm726)  

This article is cited in 2 scientific papers (total in 2 papers)

Several extremal approximation problems for the characteristic function of a spherical layer

M. V. Deikalova

Ural Federal University
Full-text PDF (204 kB) Citations (2)
References:
Abstract: We discuss three related extremal problems on the set $\mathcal P_{n,m}$ of algebraic polynomials of a given degree $n$ on the unit sphere $\mathbb S^{m-1}$ of the Euclidean space $\mathbb R^m$ of dimension $m\ge2$. (1) The norm of the functional $F(\eta)=F_hP_n=\int_{\mathbb G(\eta)}P_n(x)dx$, which is equal to the integral over the spherical layer $\mathbb G(\eta)=\{x=(x_1,\dots,x_m)\in\mathbb S^{m-1}\colon h'\le x_m\le h''\}$ defined by a pair of real numbers $\eta=(h',h'')$, $-1\le h'<h''\le1$, on the set $\mathcal P_{n,m}$ with the norm of the space $L(\mathbb S^{m-1})$ of functions summable on the sphere. (2) The best approximation in $L_\infty(\mathbb S^{m-1})$ of the characteristic function $\chi_\eta$ of the layer $\mathbb G(\eta)$ by the subspace $\mathcal P^\bot_{n,m}$ of functions from $L_\infty(\mathbb S^{m-1})$ that are orthogonal to the space of polynomials $\mathcal P_{n,m}$. (3) The best approximation in the space $L(\mathbb S^{m-1})$ of the function $\chi_\eta$ by the space of polynomials $\mathcal P_{n,m}$. We present the solution of all three problems for the values $h'$ and $h''$ which are neighboring roots of the polynomial in a single variable of degree $n+1$ that deviates the least from zero in the space $L_1^\phi(-1,1)$ on the interval $(-1,1)$ with ultraspherical weight $ \phi(t)=(1-t^2)^\alpha$, $\alpha=(m-3)/2$. We study the respective one-dimensional problems in the space of functions summable on $(-1,1)$ with arbitrary not necessary ultraspherical weight.
Keywords: Euclidean sphere, characteristic function of a spherical layer, algebraic polynomials, approximation on a sphere.
Received: 26.02.2011
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2012, Volume 277, Issue 1, Pages 79–92
DOI: https://doi.org/10.1134/S0081543812050094
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
Language: Russian
Citation: M. V. Deikalova, “Several extremal approximation problems for the characteristic function of a spherical layer”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 122–135; Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 79–92
Citation in format AMSBIB
\Bibitem{Dei11}
\by M.~V.~Deikalova
\paper Several extremal approximation problems for the characteristic function of a~spherical layer
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 3
\pages 122--135
\mathnet{http://mi.mathnet.ru/timm726}
\elib{https://elibrary.ru/item.asp?id=17870126}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 277
\issue , suppl. 1
\pages 79--92
\crossref{https://doi.org/10.1134/S0081543812050094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305909000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863570298}
Linking options:
  • https://www.mathnet.ru/eng/timm726
  • https://www.mathnet.ru/eng/timm/v17/i3/p122
  • This publication is cited in the following 2 articles:
    1. Marina V. Deikalova, Anastasiya Yu. Torgashova, “One-sided $L$-approximation on a sphere of the characteristic function of a layer”, Ural Math. J., 4:2 (2018), 13–23  mathnet  crossref  mathscinet
    2. Golitschek M.V., “On the l-Infinity-Norm of the Orthogonal Projector Onto Splines. a Short Proof of a. Shadrin's Theorem”, J. Approx. Theory, 181 (2014), 30–42  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :93
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025