Abstract:
We discuss three related extremal problems on the set $\mathcal P_{n,m}$ of algebraic polynomials of a given degree $n$ on the unit sphere $\mathbb S^{m-1}$ of the Euclidean space $\mathbb R^m$ of dimension $m\ge2$. (1) The norm of the functional $F(\eta)=F_hP_n=\int_{\mathbb G(\eta)}P_n(x)dx$, which is equal to the integral over the spherical layer $\mathbb G(\eta)=\{x=(x_1,\dots,x_m)\in\mathbb S^{m-1}\colon h'\le x_m\le h''\}$ defined by a pair of real numbers $\eta=(h',h'')$, $-1\le h'<h''\le1$, on the set $\mathcal P_{n,m}$ with the norm of the space $L(\mathbb S^{m-1})$ of functions summable on the sphere. (2) The best approximation in $L_\infty(\mathbb S^{m-1})$ of the characteristic function $\chi_\eta$ of the layer $\mathbb G(\eta)$ by the subspace $\mathcal P^\bot_{n,m}$ of functions from $L_\infty(\mathbb S^{m-1})$ that are orthogonal to the space of polynomials $\mathcal P_{n,m}$. (3) The best approximation in the space $L(\mathbb S^{m-1})$ of the function $\chi_\eta$ by the space of polynomials $\mathcal P_{n,m}$. We present the solution of all three problems for the values $h'$ and $h''$ which are neighboring roots of the polynomial in a single variable of degree $n+1$ that deviates the least from zero in the space $L_1^\phi(-1,1)$ on the interval $(-1,1)$ with ultraspherical weight $ \phi(t)=(1-t^2)^\alpha$, $\alpha=(m-3)/2$. We study the respective one-dimensional problems in the space of functions summable on $(-1,1)$ with arbitrary not necessary ultraspherical weight.
Keywords:
Euclidean sphere, characteristic function of a spherical layer, algebraic polynomials, approximation on a sphere.
Citation:
M. V. Deikalova, “Several extremal approximation problems for the characteristic function of a spherical layer”, Trudy Inst. Mat. i Mekh. UrO RAN, 17, no. 3, 2011, 122–135; Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 79–92
\Bibitem{Dei11}
\by M.~V.~Deikalova
\paper Several extremal approximation problems for the characteristic function of a~spherical layer
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2011
\vol 17
\issue 3
\pages 122--135
\mathnet{http://mi.mathnet.ru/timm726}
\elib{https://elibrary.ru/item.asp?id=17870126}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2012
\vol 277
\issue , suppl. 1
\pages 79--92
\crossref{https://doi.org/10.1134/S0081543812050094}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305909000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84863570298}
Linking options:
https://www.mathnet.ru/eng/timm726
https://www.mathnet.ru/eng/timm/v17/i3/p122
This publication is cited in the following 2 articles:
Marina V. Deikalova, Anastasiya Yu. Torgashova, “One-sided $L$-approximation on a sphere of the characteristic function of a layer”, Ural Math. J., 4:2 (2018), 13–23
Golitschek M.V., “On the l-Infinity-Norm of the Orthogonal Projector Onto Splines. a Short Proof of a. Shadrin's Theorem”, J. Approx. Theory, 181 (2014), 30–42