|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 203–210
(Mi timm654)
|
|
|
|
Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series
S. V. Konyagin Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
If an increasing sequence $\{n_m\}$ of positive integers and a modulus of continuity $\omega$ satisfy the condition $\sum_{m=1}^\infty\omega(1/n_m)/m<\infty$, then it is known that the subsequence of partial sums $S_{n_m}(f,x)$ converges almost everywhere to $f(x)$ for any function $f\in H_1^\omega$. We show that this sufficient convergence condition is close to a necessary condition for a lacunary sequence $\{n_m\}$.
Keywords:
Fourier series, Lebesgue measure, modulus of continuity.
Received: 17.02.2010
Citation:
S. V. Konyagin, “Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 203–210; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S99–S106
Linking options:
https://www.mathnet.ru/eng/timm654 https://www.mathnet.ru/eng/timm/v16/i4/p203
|
Statistics & downloads: |
Abstract page: | 569 | Full-text PDF : | 146 | References: | 72 | First page: | 5 |
|