Abstract:
If an increasing sequence {nm} of positive integers and a modulus of continuity ω satisfy the condition ∑∞m=1ω(1/nm)/m<∞, then it is known that the subsequence of partial sums Snm(f,x) converges almost everywhere to f(x) for any function f∈Hω1. We show that this sufficient convergence condition is close to a necessary condition for a lacunary sequence {nm}.
Keywords:
Fourier series, Lebesgue measure, modulus of continuity.
\Bibitem{Kon10}
\by S.~V.~Konyagin
\paper Almost everywhere divergence of lacunary subsequences of partial sums of Fourier series
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 203--210
\mathnet{http://mi.mathnet.ru/timm654}
\elib{https://elibrary.ru/item.asp?id=15318501}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S99--S106
\crossref{https://doi.org/10.1134/S0081543811050105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959271459}
Linking options:
https://www.mathnet.ru/eng/timm654
https://www.mathnet.ru/eng/timm/v16/i4/p203
This publication is cited in the following 2 articles:
Ushangi Goginava, Farrukh Mukhamedov, “On problems of the divergence of logarithmic means of Fourier series”, Proc. Amer. Math. Soc., 2025
B. S. Kashin, Yu. V. Malykhin, V. Yu. Protasov, K. S. Ryutin, I. D. Shkredov, “Sergei Vladimirovich Konyagin turns 60”, Proc. Steklov Inst. Math., 303 (2018), 1–9