Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 193–202 (Mi timm653)  

This article is cited in 2 scientific papers (total in 2 papers)

A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series

N. A. Il'yasov

Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
Full-text PDF (188 kB) Citations (2)
References:
Abstract: Rate versions of the Riesz criterion ($A=L_2(\mathbb T)*L_2(\mathbb T)$) are established in terms of best approximations ($A[\lambda]=E_2t[\lambda^{1/2}]*E_2[\lambda^{1/2}]$) and moduli of smoothness ($A[\omega]=H_2^l[\omega^{1/2}]*H_2^l[\omega^{1/2}]$) of the functions that compose the convolution, and conditions are found for $\lambda$ (necessary and sufficient in the case $1\le p<2$ and sufficient in the case $2<p<\infty$) under which the equality$A[\lambda]=E_p[\lambda^{1/2}]*E_p[\lambda^{1/2}]$ is valid, where $\lambda\in M_0$, $\omega\in\Omega_l$, $l\in\mathbb N$.
Keywords: trigonometric Fourier series, absolute convergence, convolution of two functions, best approximation, modulus of smoothness, rate version of the Riesz criterion.
Received: 12.03.2010
Bibliographic databases:
Document Type: Article
UDC: 517.518.453
Language: Russian
Citation: N. A. Il'yasov, “A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 193–202
Citation in format AMSBIB
\Bibitem{Ily10}
\by N.~A.~Il'yasov
\paper A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 193--202
\mathnet{http://mi.mathnet.ru/timm653}
\elib{https://elibrary.ru/item.asp?id=15318500}
Linking options:
  • https://www.mathnet.ru/eng/timm653
  • https://www.mathnet.ru/eng/timm/v16/i4/p193
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:609
    Full-text PDF :224
    References:106
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024