|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 193–202
(Mi timm653)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series
N. A. Il'yasov Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
Abstract:
Rate versions of the Riesz criterion ($A=L_2(\mathbb T)*L_2(\mathbb T)$) are established in terms of best approximations ($A[\lambda]=E_2t[\lambda^{1/2}]*E_2[\lambda^{1/2}]$) and moduli of smoothness ($A[\omega]=H_2^l[\omega^{1/2}]*H_2^l[\omega^{1/2}]$) of the functions that compose the convolution, and conditions are found for $\lambda$ (necessary and sufficient in the case $1\le p<2$ and sufficient in the case $2<p<\infty$) under which the equality$A[\lambda]=E_p[\lambda^{1/2}]*E_p[\lambda^{1/2}]$ is valid, where $\lambda\in M_0$, $\omega\in\Omega_l$, $l\in\mathbb N$.
Keywords:
trigonometric Fourier series, absolute convergence, convolution of two functions, best approximation, modulus of smoothness, rate version of the Riesz criterion.
Received: 12.03.2010
Citation:
N. A. Il'yasov, “A rate $L_p$-version for the Riesz criterion of the absolute convergence of trigonometric Fourier series”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 193–202
Linking options:
https://www.mathnet.ru/eng/timm653 https://www.mathnet.ru/eng/timm/v16/i4/p193
|
Statistics & downloads: |
Abstract page: | 609 | Full-text PDF : | 224 | References: | 106 | First page: | 4 |
|