Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 65–73 (Mi timm641)  

Some properties of Jacobi polynomials orthogonal on a circle

V. M. Badkov

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: Let $\{\psi^{(\alpha,\beta)}_n(z)\}_{n=0}^\infty$ be a system of Jacobi polynomials that is orthonormal on the circle $|z|=1$ with respect to the weight $(1-\cos\tau)^{\alpha+1/2}(1+\cos\tau)^{\beta+1/2}$ ($\alpha,\beta>-1$), and let $\psi_n^{(\alpha,\beta)*}(z):=z^n\overline{\psi_n^{(\alpha,\beta)}(1/\overline z)}$. We establish relations between the polynomial $\psi_n^{(\alpha,-1/2)}(z)$ and the $n$-th $(C,\alpha-1/2)$-mean of the Maclaurin series for the function $(1-z)^{-\alpha-3/2}$ and also between the polynomial $\psi_n^{(\alpha,-1/2)*}(z)$ and the $n$-th $(C,\alpha+1/2)$-mean of the Maclaurin series for the function $(1-z)^{-\alpha-1/2}$. We use these relations to derive an asymptotic formula for $\psi_n^{(\alpha, -1/2)}(z)$; the formula is uniform inside the disk $|z|<1$. It follows that $\psi_n^{(\alpha,-1/2)}(z)\neq0$ in the disk $|z|\le\rho$ for fixed $\rho\in(0,1)$ and $\alpha>-1$ if $n$ is sufficiently large.
Keywords: Jacobi polynomials, Cesáaro means, asymptotic formula, zeros.
Received: 11.02.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 273, Issue 1, Pages S49–S58
DOI: https://doi.org/10.1134/S0081543811050051
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. M. Badkov, “Some properties of Jacobi polynomials orthogonal on a circle”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 65–73; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S49–S58
Citation in format AMSBIB
\Bibitem{Bad10}
\by V.~M.~Badkov
\paper Some properties of Jacobi polynomials orthogonal on a~circle
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 65--73
\mathnet{http://mi.mathnet.ru/timm641}
\elib{https://elibrary.ru/item.asp?id=15318488}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S49--S58
\crossref{https://doi.org/10.1134/S0081543811050051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959350430}
Linking options:
  • https://www.mathnet.ru/eng/timm641
  • https://www.mathnet.ru/eng/timm/v16/i4/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :112
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024