Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2010, Volume 16, Number 4, Pages 54–64 (Mi timm640)  

This article is cited in 4 scientific papers (total in 4 papers)

On one of Geronimus's results

A. G. Babenkoa, Yu. V. Kryakinb, V. A. Yudinc

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Mathematical Institute, University of Wroclaw
c Moscow Power Engineering Institute (Technical University)
Full-text PDF (206 kB) Citations (4)
References:
Abstract: In 1935, Ya. L. Geronimus found for the function $\sin(n+1)t-2q\sin{nt}$, $q\in\mathbb R$, the best integral approximation on the period $[-\pi,\pi)$ by the subspace of trigonometric polynomials of degree at most $n-1$. The result was an integral analog of the known theorem by E. I. Zolotarev (1868). At present, there are several methods of proving the mentioned fact. We propose one more variant of the proof. In the case $|q|\ge1$, we apply the $(2\pi/n)$-periodization as well as the orthogonality of the function $|\sin{nt}|$ and the harmonic $\cos t$ on the period. In the case $|q|<1$, we use the duality relations for P. L. Chebyshev's theorem (1859) on a rational function least deviating from zero on a segment in the uniform metric.
Keywords: integral and uniform approximation of individual functions by polynomials.
Received: 10.02.2010
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2011, Volume 273, Issue 1, Pages S37–S48
DOI: https://doi.org/10.1134/S008154381105004X
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: A. G. Babenko, Yu. V. Kryakin, V. A. Yudin, “On one of Geronimus's results”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 4, 2010, 54–64; Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S37–S48
Citation in format AMSBIB
\Bibitem{BabKryYud10}
\by A.~G.~Babenko, Yu.~V.~Kryakin, V.~A.~Yudin
\paper On one of Geronimus's results
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2010
\vol 16
\issue 4
\pages 54--64
\mathnet{http://mi.mathnet.ru/timm640}
\elib{https://elibrary.ru/item.asp?id=15318487}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2011
\vol 273
\issue , suppl. 1
\pages S37--S48
\crossref{https://doi.org/10.1134/S008154381105004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305481300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959207840}
Linking options:
  • https://www.mathnet.ru/eng/timm640
  • https://www.mathnet.ru/eng/timm/v16/i4/p54
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:1163
    Full-text PDF :134
    References:50
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024