Abstract:
In the space L2 on the segment [−1,1] with the power weight |x|2λ+1, λ⩾−1/2 , we define a complete orthogonal system, the value of the best approximation with respect to this system, the operator of generalized shift, and the modulus of continuity and prove the sharp Jackson inequality.
Citation:
V. I. Ivanov, D. V. Chertova, Liu Yongping, “The sharp Jackson inequality in the space L2 on the segment [−1,1] with the power weight”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 112–126; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S133–S149
\Bibitem{IvaCheLiu08}
\by V.~I.~Ivanov, D.~V.~Chertova, Liu Yongping
\paper The sharp Jackson inequality in the space $L_2$ on the segment $[-1,1]$ with the power weight
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 112--126
\mathnet{http://mi.mathnet.ru/timm45}
\elib{https://elibrary.ru/item.asp?id=11929750}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S133--S149
\crossref{https://doi.org/10.1134/S0081543809050113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265511100011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349112688}
Linking options:
https://www.mathnet.ru/eng/timm45
https://www.mathnet.ru/eng/timm/v14/i3/p112
This publication is cited in the following 3 articles:
O. A. Dzhurakhonov, “Priblizhenie funktsii dvukh peremennykh «krugovymi»
summami Fure — Chebysheva v $L_{2,\rho}$”, Vladikavk. matem. zhurn., 22:2 (2020), 5–17
K. Tukhliev, “Srednekvadraticheskoe priblizhenie funktsii ryadami Fure–Besselya i znacheniya poperechnikov nekotorykh funktsionalnykh klassov”, Chebyshevskii sb., 17:4 (2016), 141–156
Liu Y.P. Song Ch.Yu., “Dunkl'S Theory and Best Approximation By Entire Functions of Exponential Type in l-2-Metric With Power Weight”, Acta. Math. Sin.-English Ser., 30:10 (2014), 1748–1762