Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 3, Pages 99–111 (Mi timm44)  

This article is cited in 1 scientific paper (total in 1 paper)

The Wirtinger–Steklov inequality between the norm of a periodic function and the norm of the positive cutoff of its derivative

E. A. Zernyshkina

Ozersk Technology Institute
Full-text PDF (303 kB) Citations (1)
References:
Abstract: We study the sharp constant in the inequality between the $L_p$-mean ($p\ge0$) of a $2\pi$-periodic function with zero mean value and the $L_q$-norm ($q\ge1$) of the positive cutoff of its derivative. We obtain estimates of the constant from below for $0\le p\le\infty$ and from above for $1\le p\le\infty$ for an arbitrary $1\le q\le\infty$. We write out the values of the sharp constant in the cases $p=2$, $1\le q\le\infty$ and $p=\infty$, $1\le q\le\infty$.
Received: 01.03.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2009, Volume 264, Issue 1, Pages S199–S213
DOI: https://doi.org/10.1134/S0081543809050174
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: E. A. Zernyshkina, “The Wirtinger–Steklov inequality between the norm of a periodic function and the norm of the positive cutoff of its derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 99–111; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S199–S213
Citation in format AMSBIB
\Bibitem{Zer08}
\by E.~A.~Zernyshkina
\paper The Wirtinger--Steklov inequality between the norm of a~periodic function and the norm of the positive cutoff of its derivative
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 99--111
\mathnet{http://mi.mathnet.ru/timm44}
\elib{https://elibrary.ru/item.asp?id=11929749}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S199--S213
\crossref{https://doi.org/10.1134/S0081543809050174}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265511100017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349145430}
Linking options:
  • https://www.mathnet.ru/eng/timm44
  • https://www.mathnet.ru/eng/timm/v14/i3/p99
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:736
    Full-text PDF :589
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024