Abstract:
We study the sharp constant in the inequality between the $L_p$-mean ($p\ge0$) of a $2\pi$-periodic function with zero mean value and the $L_q$-norm ($q\ge1$) of the positive cutoff of its derivative. We obtain estimates of the constant from below for $0\le p\le\infty$ and from above for $1\le p\le\infty$ for an arbitrary $1\le q\le\infty$. We write out the values of the sharp constant in the cases $p=2$, $1\le q\le\infty$ and $p=\infty$, $1\le q\le\infty$.
Citation:
E. A. Zernyshkina, “The Wirtinger–Steklov inequality between the norm of a periodic function and the norm of the positive cutoff of its derivative”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 3, 2008, 99–111; Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S199–S213
\Bibitem{Zer08}
\by E.~A.~Zernyshkina
\paper The Wirtinger--Steklov inequality between the norm of a~periodic function and the norm of the positive cutoff of its derivative
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 3
\pages 99--111
\mathnet{http://mi.mathnet.ru/timm44}
\elib{https://elibrary.ru/item.asp?id=11929749}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2009
\vol 264
\issue , suppl. 1
\pages S199--S213
\crossref{https://doi.org/10.1134/S0081543809050174}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000265511100017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349145430}
Linking options:
https://www.mathnet.ru/eng/timm44
https://www.mathnet.ru/eng/timm/v14/i3/p99
This publication is cited in the following 1 articles:
Antonia Chinnì, Beatrice Di Bella, Petru Jebelean, Călin Şerban, “Periodic Solutions for Systems with p-Relativistic Operator and Unbounded Discontinuous Nonlinearities”, Mediterr. J. Math., 18:1 (2021)