Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 2, Pages 33–47 (Mi timm22)  

This article is cited in 6 scientific papers (total in 7 papers)

Mathematical Programming

Finding the projection of a given point on the set of solutions of a linear programming problem

A. I. Golikov, Yu. G. Evtushenko
Full-text PDF (337 kB) Citations (7)
References:
Abstract: The problem of finding the projections of points on the sets of solutions of primal and dual problems of linear programming is considered. This problem is reduced to a single solution of the problem of minimizing a new auxiliary function, starting from some threshold value of the penalty coefficient. Estimates of the threshold value are obtained. A software implementation of the proposed method is compared with some known commercial and research software packages for solving linear programming problems.
Received: 25.01.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2008, Volume 14, Issue 2, Pages S68–S83
DOI: https://doi.org/10.1134/S0081543808060084
Bibliographic databases:
Document Type: Article
UDC: 519.854
Language: Russian
Citation: A. I. Golikov, Yu. G. Evtushenko, “Finding the projection of a given point on the set of solutions of a linear programming problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 2, 2008, 33–47; Proc. Steklov Inst. Math. (Suppl.), 14, suppl. 2 (2008), S68–S83
Citation in format AMSBIB
\Bibitem{GolEvt08}
\by A.~I.~Golikov, Yu.~G.~Evtushenko
\paper Finding the projection of a~given point on the set of solutions of a~linear programming problem
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 2
\pages 33--47
\mathnet{http://mi.mathnet.ru/timm22}
\zmath{https://zbmath.org/?q=an:1178.90264}
\elib{https://elibrary.ru/item.asp?id=11929727}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2008
\vol 14
\issue , suppl. 2
\pages S68--S83
\crossref{https://doi.org/10.1134/S0081543808060084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208363700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-60949090229}
Linking options:
  • https://www.mathnet.ru/eng/timm22
  • https://www.mathnet.ru/eng/timm/v14/i2/p33
  • This publication is cited in the following 7 articles:
    1. M.V. Dolgopolik, “A note on the generalized Hessian of the least squares associated with systems of linear inequalities”, Optimization Methods and Software, 2024, 1  crossref
    2. A. I. Golikov, Yu. G. Evtushenko, “Regularization and normal solutions of systems of linear equations and inequalities”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 102–110  mathnet  crossref  mathscinet  isi  elib
    3. A. I. Golikov, Yu. G. Evtushenko, “Generalized Newton method for linear optimization problems with inequality constraints”, Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 96–107  mathnet  crossref  mathscinet  isi  elib
    4. Evtushenko Yu.G., Tretyakov A.A., “Elementarnoe dokazatelstvo konstruktivnogo varianta teoremy o kasatelnykh napravleniyakh i teoremy o neyavnoi funktsii”, Doklady Akademii nauk, 442:2 (2012), 156–156  mathscinet  zmath  elib
    5. Mathias Burger, Giuseppe Notarstefano, Frank Allgower, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, 7457  crossref
    6. Yury Evtushenko, Alexander Golikov, Wiley Encyclopedia of Operations Research and Management Science, 2011  crossref
    7. M. K. Kerimov, “The 70th birthday of Academician Yurii Gavrilovich Evtushenko”, Comput. Math. Math. Phys., 49:10 (2009), 1653–1661  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:1612
    Full-text PDF :999
    References:142
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025