Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2008, Volume 14, Number 2, Pages 23–32 (Mi timm21)  

This article is cited in 11 scientific papers (total in 11 papers)

Mathematical Programming

Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space

E. Kh. Gimadi
References:
Abstract: The paper presents a polynomial approximation algorithm A solving the problem of finding one and two edge-disjoint Hamiltonian cycles (traveling salesman routes) of maximal weight in a complete weighted undirected graph in multidimensional Euclidean space. The asymptotic optimality of the algorithm is established.
Received: 18.02.2008
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2008, Volume 263, Issue 2, Pages S57–S67
DOI: https://doi.org/10.1134/S0081543808060072
Bibliographic databases:
Document Type: Article
UDC: 519.8
Language: Russian
Citation: E. Kh. Gimadi, “Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space”, Trudy Inst. Mat. i Mekh. UrO RAN, 14, no. 2, 2008, 23–32; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S57–S67
Citation in format AMSBIB
\Bibitem{Gim08}
\by E.~Kh.~Gimadi
\paper Asymptotically optimal algorithm for finding one and two edge-disjoint traveling salesman routes of maximal weight in Euclidean space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2008
\vol 14
\issue 2
\pages 23--32
\mathnet{http://mi.mathnet.ru/timm21}
\zmath{https://zbmath.org/?q=an:1178.90335}
\elib{https://elibrary.ru/item.asp?id=11929726}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2008
\vol 263
\issue , suppl. 2
\pages S57--S67
\crossref{https://doi.org/10.1134/S0081543808060072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208363700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-60949091233}
Linking options:
  • https://www.mathnet.ru/eng/timm21
  • https://www.mathnet.ru/eng/timm/v14/i2/p23
  • This publication is cited in the following 11 articles:
    1. A. N. Glebov, S. G. Toktokhoeva, “A polynomial algorithm with asymptotic ratio 2/3 for the asymmetric maximization version of the m-PSP”, J. Appl. Industr. Math., 14:3 (2020), 456–469  mathnet  crossref  crossref
    2. A. N. Glebov, S. G. Toktokhoeva, “A Polynomial Algorithm with Asymptotic Ratio 2/3 for the Asymmetric Maximization Version of the m-PSP”, J. Appl. Ind. Math., 14:3 (2020), 456  crossref
    3. A. N. Glebov, S. G. Toktokhoeva, “A polynomial 3/5-approximate algorithm for the asymmetric maximization version of 3-PSP”, J. Appl. Industr. Math., 13:2 (2019), 219–238  mathnet  crossref  crossref
    4. Edward Kh. Gimadi, Oxana Yu. Tsidulko, Lecture Notes in Computer Science, 11179, Analysis of Images, Social Networks and Texts, 2018, 283  crossref
    5. Michael Khachay, Katherine Neznakhina, “Approximability of the minimum-weight k-size cycle cover problem”, J Glob Optim, 66:1 (2016), 65  crossref
    6. Michael Khachay, Katherine Neznakhina, “Polynomial Time Approximation Scheme for the Minimum-weight k-Size Cycle Cover Problem in Euclidean space of an arbitrary fixed dimension”, IFAC-PapersOnLine, 49:12 (2016), 6  crossref
    7. Aleksey N. Glebov, Anastasiya V. Gordeeva, Lecture Notes in Computer Science, 9869, Discrete Optimization and Operations Research, 2016, 159  crossref
    8. Khachai M.Yu., Neznakhina E.D., “Approximability of the Problem About a Minimum-Weight Cycle Cover of a Graph”, Dokl. Math., 91:2 (2015), 240–245  crossref  mathscinet  zmath  isi  elib  scopus
    9. M. Yu. Khachai, E. D. Neznakhina, “Polynomial-time approximation scheme for a Euclidean problem on a cycle covering of a graph”, Proc. Steklov Inst. Math. (Suppl.), 289:1 (2015), 111–125  mathnet  mathnet  crossref  isi  scopus
    10. E. E. Ivanko, “Method of scaling in approximate solution of the traveling salesman problem”, Autom. Remote Control, 72:12 (2011), 2527–2540  mathnet  crossref  mathscinet  zmath  isi
    11. A. E. Baburin, E. Kh. Gimadi, “On the asymptotic accuracy of an algorithm for solving the m-PSP maximum problem in a multidimensional Euclidean space”, Proc. Steklov Inst. Math. (Suppl.), 272, suppl. 1 (2011), S1–S13  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:466
    Full-text PDF :116
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025