Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 2, Pages 10–22
DOI: https://doi.org/10.21538/0134-4889-2023-29-2-10-22
(Mi timm1995)
 

A Study of New Methods for Localizing Discontinuity Lines on Extended Correctness Classes

A. L. Ageev, T. V. Antonova

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We consider the ill-posed problem of finding the position of the discontinuity lines of a function of two variables. It is assumed that the function is smooth outside the lines of discontinuity but has a discontinuity of the first kind on the line. At each node of a uniform grid with step $\tau$, the mean values of the perturbed function on a square with side $\tau$ are known. The perturbed function approximates the exact function in the space $L_2(\mathbb{R}^2)$. The perturbation level $\delta$ is assumed to be known. Previously, the authors investigated (accuracy estimates were obtained) global discrete regularizing algorithms for approximating the set of lines of discontinuity of a noisy function provided that the line of discontinuity of the exact function satisfies the local Lipschitz condition. In this paper, we introduce a one-sided Lipschitz condition and formulate a new, wider correctness class. New methods for localizing discontinuity lines are constructed that work on an extended class of functions. A convergence theorem is proved, and estimates of the approximation error and other important characteristics of the algorithms are obtained. It is shown that the new methods determine the position of the discontinuity lines with guarantee in situations where the standard methods do not work.
Keywords: ill-posed problems, regularization method, discontinuity line, global localization, discretization, Lipschitz condition.
Received: 17.04.2023
Revised: 28.04.2023
Accepted: 15.05.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 323, Issue 1, Pages S19–S31
DOI: https://doi.org/10.1134/S0081543823060020
Bibliographic databases:
Document Type: Article
UDC: 517.988.68
MSC: 65J22, 68U10
Language: Russian
Citation: A. L. Ageev, T. V. Antonova, “A Study of New Methods for Localizing Discontinuity Lines on Extended Correctness Classes”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 2, 2023, 10–22; Proc. Steklov Inst. Math. (Suppl.), 323, suppl. 1 (2023), S19–S31
Citation in format AMSBIB
\Bibitem{AgeAnt23}
\by A.~L.~Ageev, T.~V.~Antonova
\paper A Study of New Methods for Localizing Discontinuity Lines on Extended Correctness Classes
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 2
\pages 10--22
\mathnet{http://mi.mathnet.ru/timm1995}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-2-10-22}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4610488}
\elib{https://elibrary.ru/item.asp?id=53846793}
\edn{https://elibrary.ru/pvyotc}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 323
\issue , suppl. 1
\pages S19--S31
\crossref{https://doi.org/10.1134/S0081543823060020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85185102545}
Linking options:
  • https://www.mathnet.ru/eng/timm1995
  • https://www.mathnet.ru/eng/timm/v29/i2/p10
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :19
    References:25
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024