Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 1, Pages 7–23
DOI: https://doi.org/10.21538/0134-4889-2023-29-1-7-23
(Mi timm1973)
 

Optimal Recovery on Classes of Functions Analytic in an Annulus

O. V. Akopyana, R. R. Akopyanb

a Institute of Natural Sciences, Ural Federal University named after the first President of Russia Boris Yeltsin, Ekaterinburg
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: Let $C_{r,R}$ be an annulus with boundary circles $\gamma_r$ and $\gamma_R$ centered at zero; its inner and outer radii are $r$ and $R$, respectively, $0<r<R<\infty$. On the class of functions analytic in the annulus $C_{r,R}$ with finite $L^2$-norms of the angular limits on the circle $\gamma_r$ and of the $n$th derivatives (of the functions themselves for $n=0$) on the circle $\gamma_R$, we study interconnected extremal problems for the operator $\psi_{\rho}^m$ that takes the boundary values of a function on $\gamma_r$ to its restriction (for $m=0$) or the restriction of its $m$th derivative (for $m>0$) to an intermediate circle $\gamma_\rho$, $r<\rho<R$. The problem of the best approximation of $\psi_{\rho}^m$ by bounded linear operators from $L^2(\gamma_r)$ to $C(\gamma_\rho)$ is solved. A method for the optimal recovery of the $m$th derivative on an intermediate circle $\gamma_\rho$ from $L^2$-approximately given values of the function on the boundary circle $\gamma_r$ is proposed and its error is found. The Hadamard–Kolmogorov exact inequality, which estimates the uniform norm of the $m$th derivative on an intermediate circle $\gamma_\rho$ in terms of the $L^2$-norms of the limit boundary values of the function and the $n$th derivative on the circles $\gamma_r$ and $\gamma_R$, is derived.
Keywords: analytic functions, Hadamard three-circle theorem, Kolmogorov's inequality, optimal recovery.
Received: 10.02.2023
Revised: 27.02.2023
Accepted: 27.02.2023
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2023, Volume 321, Issue 1, Pages S4–S19
DOI: https://doi.org/10.1134/S0081543823030033
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 30A10, 30E10
Language: Russian
Citation: O. V. Akopyan, R. R. Akopyan, “Optimal Recovery on Classes of Functions Analytic in an Annulus”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 1, 2023, 7–23; Proc. Steklov Inst. Math. (Suppl.), 321, suppl. 1 (2023), S4–S19
Citation in format AMSBIB
\Bibitem{AkoAko23}
\by O.~V.~Akopyan, R.~R.~Akopyan
\paper Optimal Recovery on Classes of Functions Analytic in an Annulus
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 1
\pages 7--23
\mathnet{http://mi.mathnet.ru/timm1973}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-1-7-23}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582788}
\elib{https://elibrary.ru/item.asp?id=50358602}
\edn{https://elibrary.ru/mclehs}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2023
\vol 321
\issue , suppl. 1
\pages S4--S19
\crossref{https://doi.org/10.1134/S0081543823030033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001027106500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85171389099}
Linking options:
  • https://www.mathnet.ru/eng/timm1973
  • https://www.mathnet.ru/eng/timm/v29/i1/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025