Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2023, Volume 29, Number 1, Pages 24–35
DOI: https://doi.org/10.21538/0134-4889-2023-29-1-24-35
(Mi timm1974)
 

This article is cited in 2 scientific papers (total in 2 papers)

Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs

V. A. Baranskii, T. A. Senchonok

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (233 kB) Citations (2)
References:
Abstract: A bipartite graph $H=(V_1,E,V_2)$ is called a bipartite-threshold graph if it has no lifting triples $(x,v,y)$ such that $x,y\in V_1$, $v\in V_2$ or $x,y\in V_2$, $v\in V_1$. Every bipartite graph $H=(V_1,E,V_2)$ can be transformed to a bipartite-threshold graph by a finite sequence of such bipartite lifting rotations of edges. In our previous paper, we studied the properties of bipartite-threshold graphs and noted their importance for the class of threshold graphs. Now we want to show the importance of these graphs for the class of bipartite graphs. We will always understand an integer partition as a nonincreasing sequence of nonnegative integers that contains only finitely many nonzero terms. For any integer partitions $\alpha$ and $\beta$ such that $\mathrm{sum}(\alpha)=\mathrm{sum}(\beta)$ and $\alpha\leq\beta^*$, where $\beta^*$ is the conjugate partition of $\beta$, we denote by $\mathrm{BG}(\alpha, \beta)$ the family of bipartite graphs $H=(V_1,E,V_2)$ implementing the pair of partitions $(\alpha, \beta)$, i.e., the family of all bipartite graphs for which the given pair of partitions is composed of the degrees of vertices in the first and second parts of the graph, respectively, supplemented with zeros. In this paper we describe the bipartite-threshold graphs from the family $\mathrm{BTG}_\uparrow(\alpha, \beta)$ of all bipartite-threshold graphs that can be obtained from the graphs of the family $\mathrm{BG}(\alpha, \beta)$ by bipartite lifting rotations of edges. We also find the smallest length of sequences of bipartite lifting rotations of edges transforming graphs from $\mathrm{BG}(\alpha,\beta)$ to graphs belonging to $\mathrm{BTG}_\uparrow(\alpha, \beta)$, give an algorithm that finds a bipartite-threshold graph from $\mathrm{BG}(\alpha, \beta)$, and describe a procedure that generates all graphs in a family $\mathrm{BG}(\alpha, \beta)$ from one graph of this family.
Keywords: integer partition, threshold graph, bipartite graph, bipartite-threshold graph, Ferrers diagram.
Received: 07.11.2022
Revised: 03.02.2023
Accepted: 06.02.2023
Bibliographic databases:
Document Type: Article
UDC: 519.176
MSC: 05A17
Language: Russian
Citation: V. A. Baranskii, T. A. Senchonok, “Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 29, no. 1, 2023, 24–35
Citation in format AMSBIB
\Bibitem{BarSen23}
\by V.~A.~Baranskii, T.~A.~Senchonok
\paper Bipartite-threshold graphs and lifting rotations of edges in bipartite graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2023
\vol 29
\issue 1
\pages 24--35
\mathnet{http://mi.mathnet.ru/timm1974}
\crossref{https://doi.org/10.21538/0134-4889-2023-29-1-24-35}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4582789}
\elib{https://elibrary.ru/item.asp?id=50358603}
\edn{https://elibrary.ru/jdirdx}
Linking options:
  • https://www.mathnet.ru/eng/timm1974
  • https://www.mathnet.ru/eng/timm/v29/i1/p24
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025