|
A Complete Description of the Relative Widths of Sobolev Classes in the Uniform Metric
Yu. V. Malykhinab a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
Abstract:
We consider the width of the Sobolev class of $2\pi$-periodic functions with ${\|f^{(r)}\|_\infty\le 1}$ with respect to the set of functions $g$ such that $\|g^{(r)}\|_\infty\le M$ in the uniform metric $K_n:=K_n(W^r_\infty,MW^r_\infty,L_\infty)$. We prove a lower bound on $K_n$ for $M=1+\varepsilon$ with small $\varepsilon$. This bound together with earlier results completes the analysis of the behavior of $K_n$.
Keywords:
Kolmogorov and relative widths.
Received: 07.06.2022 Revised: 24.08.2022 Accepted: 29.08.2022
Citation:
Yu. V. Malykhin, “A Complete Description of the Relative Widths of Sobolev Classes in the Uniform Metric”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 4, 2022, 137–142; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S188–S192
Linking options:
https://www.mathnet.ru/eng/timm1957 https://www.mathnet.ru/eng/timm/v28/i4/p137
|
Statistics & downloads: |
Abstract page: | 83 | Full-text PDF : | 35 | References: | 21 | First page: | 3 |
|