Loading [MathJax]/jax/output/SVG/config.js
Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2005, Volume 11, Number 2, Pages 120–130 (Mi timm194)  

This article is cited in 11 scientific papers (total in 11 papers)

A new cubic element in the FEM

Yu. N. Subbotin
References:
Abstract: In the paper, a new two-dimensional cubic element in the finite element method is suggested. It is proved that, in contrast to the classical element with interpolation at the center of gravity, the new element under the approximation of any admissible derivatives is free of the known condition of “sine of the smallest angle” of triangulation. It proved well to replace this condition by a weaker condition of “sine of the greatest angle” of triangulation. It is established, up to absolute constants, that the obtained estimates of approximation errors of derivatives are unimprovable. For the new element, the estimates of approximation error become worse only for triangles with two small angles. In terms of barycentric coordinates, fundamental interpolating polynomials are explicitly written out for the suggested element.
Received: 24.12.2004
Bibliographic databases:
Document Type: Article
UDC: 519.652.3
Language: Russian
Citation: Yu. N. Subbotin, “A new cubic element in the FEM”, Function theory, Trudy Inst. Mat. i Mekh. UrO RAN, 11, no. 2, 2005, 120–130; Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S176–S187
Citation in format AMSBIB
\Bibitem{Sub05}
\by Yu.~N.~Subbotin
\paper A~new cubic element in the FEM
\inbook Function theory
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2005
\vol 11
\issue 2
\pages 120--130
\mathnet{http://mi.mathnet.ru/timm194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200229}
\zmath{https://zbmath.org/?q=an:1126.65100}
\elib{https://elibrary.ru/item.asp?id=12040708}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2005
\issue , suppl. 2
\pages S176--S187
Linking options:
  • https://www.mathnet.ru/eng/timm194
  • https://www.mathnet.ru/eng/timm/v11/i2/p120
  • This publication is cited in the following 11 articles:
    1. V. S. Bazhenov, N. V. Latypova, “Nezavisimost otsenok pogreshnosti interpolyatsii mnogochlenami stepeni $2k+1$ ot uglov treugolnika”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 26:2 (2016), 160–168  mathnet  crossref  mathscinet  elib
    2. N. V. Baidakova, “Lower estimates for the error of approximation of derivatives for composite finite elements with smoothness properties”, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 29–39  mathnet  crossref  mathscinet  isi  elib
    3. N. V. Latypova, “Nezavisimost otsenok pogreshnosti interpolyatsii mnogochlenami pyatoi stepeni ot uglov treugolnika”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 3, 53–64  mathnet
    4. N. V. Baidakova, “Otsenki sverkhu velichiny pogreshnosti approksimatsii proizvodnykh v konechnom elemente Sie–Klafa–Tochera”, Tr. IMM UrO RAN, 18, no. 4, 2012, 80–89  mathnet  elib
    5. N. V. Latypova, “Nezavisimost otsenok pogreshnosti interpolyatsii mnogochlenami chetvertoi stepeni ot uglov treugolnika”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2011, no. 3, 64–74  mathnet
    6. N. V. Baidakova, “Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 33–47  mathnet  crossref  isi  elib
    7. N. V. Latypova, “Nezavisimost otsenok pogreshnosti interpolyatsii kubicheskimi mnogochlenami ot uglov treugolnika”, Tr. IMM UrO RAN, 17, no. 3, 2011, 233–241  mathnet  elib
    8. A. V. Meleshkina, “On the approximation of the derivatives of the Hermite interpolation polynomial on a triangle”, Comput. Math. Math. Phys., 50:2 (2010), 201–210  mathnet  crossref  mathscinet  adsnasa  isi
    9. N. V. Baidakova, “On some interpolation third-degree polynomials on a three-dimensional simplex”, Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S44–S59  mathnet  crossref  isi  elib
    10. Yu. V. Matveeva, “Ob ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike s ispolzovaniem smeshannykh proizvodnykh”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 7:1 (2007), 23–27  mathnet  crossref
    11. N. V. Baidakova, “A method of Hermite interpolation by polynomials of the third degree on a triangle”, Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S49–S55  mathnet  mathscinet  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :232
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025