|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2005, Volume 11, Number 2, Pages 112–119
(Mi timm193)
|
|
|
|
This article is cited in 8 scientific papers (total in 9 papers)
Divergence everywhere of subsequences of partial sums of trigonometric Fourier series
S. V. Konyagin
Abstract:
It is proved that for any increasing sequence of natural numbers $\{m_j\}$ and any nondecreasing function $\varphi\colon[0,+\infty)\to[0,+\infty)$ satisfying the condition $\varphi(u)=o(u\ln\ln)$ ($u\to\infty$) there is a function $f\in L[0,2\pi]$ such that
$$
\int_0^{2\pi}\varphi(|f(x)|)\,dx<\infty,
$$
and the Fourier partial sums $S_{m_j}(f)$ diverge unboundedly everywhere.
Received: 20.09.2004
Citation:
S. V. Konyagin, “Divergence everywhere of subsequences of partial sums of trigonometric Fourier series”, Function theory, Trudy Inst. Mat. i Mekh. UrO RAN, 11, no. 2, 2005, 112–119; Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S167–S175
Linking options:
https://www.mathnet.ru/eng/timm193 https://www.mathnet.ru/eng/timm/v11/i2/p112
|
Statistics & downloads: |
Abstract page: | 720 | Full-text PDF : | 200 | References: | 82 |
|