|
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2005, Volume 11, Number 2, Pages 112–119
(Mi timm193)
|
|
|
|
This article is cited in 8 scientific papers (total in 9 papers)
Divergence everywhere of subsequences of partial sums of trigonometric Fourier series
S. V. Konyagin
Abstract:
It is proved that for any increasing sequence of natural numbers {mj} and any nondecreasing function φ:[0,+∞)→[0,+∞) satisfying the condition φ(u)=o(ulnln) (u→∞) there is a function f∈L[0,2π] such that
∫2π0φ(|f(x)|)dx<∞,
and the Fourier partial sums Smj(f) diverge unboundedly everywhere.
Received: 20.09.2004
Citation:
S. V. Konyagin, “Divergence everywhere of subsequences of partial sums of trigonometric Fourier series”, Function theory, Trudy Inst. Mat. i Mekh. UrO RAN, 11, no. 2, 2005, 112–119; Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S167–S175
Linking options:
https://www.mathnet.ru/eng/timm193 https://www.mathnet.ru/eng/timm/v11/i2/p112
|
Statistics & downloads: |
Abstract page: | 775 | Full-text PDF : | 221 | References: | 102 |
|