Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2005, Volume 11, Number 2, Pages 112–119 (Mi timm193)  

This article is cited in 8 scientific papers (total in 9 papers)

Divergence everywhere of subsequences of partial sums of trigonometric Fourier series

S. V. Konyagin
Full-text PDF (244 kB) Citations (9)
References:
Abstract: It is proved that for any increasing sequence of natural numbers $\{m_j\}$ and any nondecreasing function $\varphi\colon[0,+\infty)\to[0,+\infty)$ satisfying the condition $\varphi(u)=o(u\ln\ln)$ ($u\to\infty$) there is a function $f\in L[0,2\pi]$ such that
$$ \int_0^{2\pi}\varphi(|f(x)|)\,dx<\infty, $$
and the Fourier partial sums $S_{m_j}(f)$ diverge unboundedly everywhere.
Received: 20.09.2004
Bibliographic databases:
Document Type: Article
UDC: 517.518.45
Language: Russian
Citation: S. V. Konyagin, “Divergence everywhere of subsequences of partial sums of trigonometric Fourier series”, Function theory, Trudy Inst. Mat. i Mekh. UrO RAN, 11, no. 2, 2005, 112–119; Proc. Steklov Inst. Math. (Suppl.), 2005no. , suppl. 2, S167–S175
Citation in format AMSBIB
\Bibitem{Kon05}
\by S.~V.~Konyagin
\paper Divergence everywhere of subsequences of partial sums of trigonometric Fourier series
\inbook Function theory
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2005
\vol 11
\issue 2
\pages 112--119
\mathnet{http://mi.mathnet.ru/timm193}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200228}
\zmath{https://zbmath.org/?q=an:1135.42005}
\elib{https://elibrary.ru/item.asp?id=12040707}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2005
\issue , suppl. 2
\pages S167--S175
Linking options:
  • https://www.mathnet.ru/eng/timm193
  • https://www.mathnet.ru/eng/timm/v11/i2/p112
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:725
    Full-text PDF :202
    References:83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024