Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 3, Pages 142–154
DOI: https://doi.org/10.21538/0134-4889-2022-28-3-142-154
(Mi timm1933)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a condition for the coincidence of transform spaces for functionals in a Hilbert space

V. V. Napalkov (Jr.)a, A. A. Nuyatovb

a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
b National Research Lobachevsky State University of Nizhny Novgorod
Full-text PDF (233 kB) Citations (1)
References:
Abstract: The paper considers the following problem. Let $H$ be some reproducing kernel Hilbert space consisting of functions given on a set $\Omega\subset {\mathbb C}^n$, $n\ge1$, and let $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in\Omega_1}$ be some complete systems of functions in $H$, where $\Omega_1\subset {\mathbb C^m}$, $m\ge1$. Define

\begin{align*} \widetilde f(z)\stackrel{def}{=}(e_1(\cdot, z), f)_{H}\, \forall z\in \Omega_1,\quad \widetilde H=\{\widetilde f,\, f\in H\}, \\ (\widetilde f_1,\widetilde f_2)_{\widetilde H}\stackrel{def}{=}(f_2,f_1)_{H}, \, \|\widetilde f_1\|_{\widetilde H}=\|f_1\|_{H} \quad\forall \widetilde f_1,\widetilde f_2\in \widetilde H, \\ \widehat f(z)\stackrel{def}{=}(e_2(\cdot, z), f)_{H}\, \forall z\in \Omega_1,\quad \widehat H=\{\widehat f,\, f\in H\}, \\ (\widehat f_1,\widehat f_2)_{\widehat H}\stackrel{def}{=}(f_2,f_1)_{H}, \, \|\widehat f_1\|_{\widehat H}=\|f_1\|_{H} \quad\forall \widehat f_1,\widehat f_2\in \widehat H. \end{align*}

It is required to find a condition under which the spaces $\widehat H$ and $\widetilde H$ coincide, i.e., $\widehat H$ and $\widetilde H$ consist of the same functions and \[ \|f\|_{\widehat H}=\|f\|_{\widetilde H} \forall f\in \widehat H=\widetilde H. \] We also study the question of conditions under which the spaces $\widehat H$ and $\widetilde H$ are equivalent. In the case when the systems of functions $\{e_j(\cdot,\xi)\}_{\xi\in\Omega_1}$, $j=1,2$, are orthosimilar decomposition systems in the space $H$ with the same measure $\mu$ given on $\Omega_1$, a criterion is established; more exactly, a condition is found that is necessary and sufficient for the coincidence (equivalence) of the spaces $\widehat H$ and $\widetilde H$. Note that, in the case of an arbitrary space $H$ and arbitrary systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ that are complete in $H$, the found condition is always necessary; i.e., if the spaces $\widehat H$ and $\widetilde H$ coincide (are equivalent), then this condition is fulfilled. In the case when the systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ are orthosimilar decomposition systems in the space $H$ with different measures $\mu_1$ and $\mu_2$, respectively, given on $\Omega_1$, we construct specific examples of spaces $H$ and systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ complete in $H$ and such that the specified condition is met, but the spaces $\widehat H$ and $\widetilde H$ are not the same (not equivalent).
Keywords: orthosimilar decomposition systems, reproducing kernel Hilbert space, Riesz basis, problem of describing the dual space.
Received: 28.04.2022
Revised: 10.08.2022
Accepted: 15.08.2022
Bibliographic databases:
Document Type: Article
UDC: 517.444
Language: Russian
Citation: V. V. Napalkov (Jr.), A. A. Nuyatov, “On a condition for the coincidence of transform spaces for functionals in a Hilbert space”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 142–154
Citation in format AMSBIB
\Bibitem{NapNuy22}
\by V.~V.~Napalkov (Jr.), A.~A.~Nuyatov
\paper On a condition for the coincidence of transform spaces for functionals in a Hilbert space
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 3
\pages 142--154
\mathnet{http://mi.mathnet.ru/timm1933}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-3-142-154}
\elib{https://elibrary.ru/item.asp?id=49352757}
Linking options:
  • https://www.mathnet.ru/eng/timm1933
  • https://www.mathnet.ru/eng/timm/v28/i3/p142
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025