|
This article is cited in 1 scientific paper (total in 1 paper)
On a condition for the coincidence of transform spaces for functionals in a Hilbert space
V. V. Napalkov (Jr.)a, A. A. Nuyatovb a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa
b National Research Lobachevsky State University of Nizhny Novgorod
Abstract:
The paper considers the following problem. Let $H$ be some reproducing kernel Hilbert space consisting of functions given on a set $\Omega\subset {\mathbb C}^n$, $n\ge1$, and let $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in\Omega_1}$ be some complete systems of functions in $H$, where $\Omega_1\subset {\mathbb C^m}$, $m\ge1$. Define
\begin{align*}
\widetilde f(z)\stackrel{def}{=}(e_1(\cdot, z), f)_{H}\, \forall z\in \Omega_1,\quad \widetilde H=\{\widetilde f,\, f\in H\},
\\ (\widetilde f_1,\widetilde f_2)_{\widetilde H}\stackrel{def}{=}(f_2,f_1)_{H}, \,
\|\widetilde f_1\|_{\widetilde H}=\|f_1\|_{H} \quad\forall \widetilde f_1,\widetilde f_2\in \widetilde H,
\\
\widehat f(z)\stackrel{def}{=}(e_2(\cdot, z), f)_{H}\, \forall z\in \Omega_1,\quad \widehat H=\{\widehat f,\, f\in H\},
\\ (\widehat f_1,\widehat f_2)_{\widehat H}\stackrel{def}{=}(f_2,f_1)_{H}, \,
\|\widehat f_1\|_{\widehat H}=\|f_1\|_{H} \quad\forall \widehat f_1,\widehat f_2\in \widehat H.
\end{align*}
It is required to find a condition under which the spaces $\widehat H$ and $\widetilde H$ coincide, i.e., $\widehat H$ and $\widetilde H$ consist of the same functions and \[ \|f\|_{\widehat H}=\|f\|_{\widetilde H} \forall f\in \widehat H=\widetilde H. \] We also study the question of conditions under which the spaces $\widehat H$ and $\widetilde H$ are equivalent. In the case when the systems of functions $\{e_j(\cdot,\xi)\}_{\xi\in\Omega_1}$, $j=1,2$, are orthosimilar decomposition systems in the space $H$ with the same measure $\mu$ given on $\Omega_1$, a criterion is established; more exactly, a condition is found that is necessary and sufficient for the coincidence (equivalence) of the spaces $\widehat H$ and $\widetilde H$. Note that, in the case of an arbitrary space $H$ and arbitrary systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ that are complete in $H$, the found condition is always necessary; i.e., if the spaces $\widehat H$ and $\widetilde H$ coincide (are equivalent), then this condition is fulfilled. In the case when the systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ are orthosimilar decomposition systems in the space $H$ with different measures $\mu_1$ and $\mu_2$, respectively, given on $\Omega_1$, we construct specific examples of spaces $H$ and systems of functions $\{e_1(\cdot,\xi)\}_{\xi\in \Omega_1}$ and $\{e_2(\cdot,\xi)\}_{\xi\in \Omega_1}$ complete in $H$ and such that the specified condition is met, but the spaces $\widehat H$ and $\widetilde H$ are not the same (not equivalent).
Keywords:
orthosimilar decomposition systems, reproducing kernel Hilbert space, Riesz basis, problem of describing the dual space.
Received: 28.04.2022 Revised: 10.08.2022 Accepted: 15.08.2022
Citation:
V. V. Napalkov (Jr.), A. A. Nuyatov, “On a condition for the coincidence of transform spaces for functionals in a Hilbert space”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 142–154
Linking options:
https://www.mathnet.ru/eng/timm1933 https://www.mathnet.ru/eng/timm/v28/i3/p142
|
|