Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 3, Pages 129–141
DOI: https://doi.org/10.21538/0134-4889-2022-28-3-129-141
(Mi timm1932)
 

This article is cited in 2 scientific papers (total in 2 papers)

On a Linear Group Pursuit Problem with Fractional Derivatives

A. I. Machtakovaab, N. N. Petrovab

a Udmurt State University, Izhevsk
b N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (223 kB) Citations (2)
References:
Abstract: A problem of pursuit of one evader by a group of pursuers is considered in a finite-dimensional Euclidean space. The dynamics is described by the system
$$ D^{(\alpha_i)}z_i=A_iz_i+B_iu_i-C_iv, \quad u_i\in U_i,\quad v\in V, $$
where $D^{(\alpha)}f$ is the Caputo derivative of order $\alpha$ of a function $f$. The sets of admissible controls of the players are convex and compact. The terminal set consists of cylindrical sets $M_i$ of the form $M_i=M_i^1+M_i^2$, where $M_i^1$ is a linear subspace of the phase space and $M_i^2$ is a convex compact set from the orthogonal complement of $M_i^1$. We propose two approaches to solving the problem, which ensure the termination of the game in a certain guaranteed time in the class of quasi-strategies. In the first approach, the pursuers construct their controls so that the terminal sets “cover” the evader's uncertainty region. In the second approach, the pursuers construct their controls using resolving functions. The theoretical results are illustrated by model examples.
Keywords: differential game, group pursuit, pursuer, evader, fractional derivative.
Funding agency Grant number
Russian Science Foundation 21-71-10070
This work was supported by the Russian Science Foundation (project no. 21-71-10070).
Received: 30.05.2022
Revised: 07.07.2022
Accepted: 11.07.2022
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, Volume 319, Issue 1, Pages S175–S187
DOI: https://doi.org/10.1134/S0081543822060153
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N79, 49N70, 91A24
Language: Russian
Citation: A. I. Machtakova, N. N. Petrov, “On a Linear Group Pursuit Problem with Fractional Derivatives”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 129–141; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S175–S187
Citation in format AMSBIB
\Bibitem{MacPet22}
\by A.~I.~Machtakova, N.~N.~Petrov
\paper On a Linear Group Pursuit Problem with Fractional Derivatives
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 3
\pages 129--141
\mathnet{http://mi.mathnet.ru/timm1932}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-3-129-141}
\elib{https://elibrary.ru/item.asp?id=49352756}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 319
\issue , suppl. 1
\pages S175--S187
\crossref{https://doi.org/10.1134/S0081543822060153}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905214000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148342252}
Linking options:
  • https://www.mathnet.ru/eng/timm1932
  • https://www.mathnet.ru/eng/timm/v28/i3/p129
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025