Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 3, Pages 5–16
DOI: https://doi.org/10.21538/0134-4889-2022-28-3-5-16
(Mi timm1923)
 

This article is cited in 2 scientific papers (total in 2 papers)

Solution of a Linear–Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional

A. V. Arguchintsev, V. A. Srochko

Irkutsk State University
Full-text PDF (203 kB) Citations (2)
References:
Abstract: A linear–quadratic problem of optimal control with arbitrary matrices in the cost functional and a multidimensional control constrained at every time is considered. The set of admissible controls consists of piecewise constant vector functions on a nonuniform discretization grid. The optimal control problem is reduced to a finite-dimensional form with the use of characteristic functions with grid structure and block matrices together with the corresponding operation of scalar product. Positive parameters of the quadratic forms provide the possibility of regularization of the cost functional. The choice of these parameters is aimed at the regularization of the functional in the sense of its reduction to a convex or concave structure at the level of a finite-dimensional model. The conditions for these parameters are of spectral nature; they are inequalities with respect to extreme eigenvalues of the block matrices that form the objective function. The corresponding convex or concave optimization problems allow to solve the problem in a finite number of iterations. A nongradient condition of global optimality is obtained for the original problem of optimal control based on known estimates for the increment of the functional. A nonlocal improvement procedure in terms of the Pontryagin function is proposed.
Keywords: linear–quadratic problem, multidimensional discrete control, functional with parameters, reduction to a finite-dimensional model, regularization of the problem.
Funding agency Grant number
Vladimir Potanin Foundation ГСАД-0022/212
This work was supported by the Vladimir Potanin Foundation (grant no. GSAD-0022/212).
Received: 30.05.2022
Revised: 05.07.2022
Accepted: 11.07.2022
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, Volume 319, Issue 1, Pages S43–S53
DOI: https://doi.org/10.1134/S0081543822060050
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49M25
Language: Russian
Citation: A. V. Arguchintsev, V. A. Srochko, “Solution of a Linear–Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 5–16; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S43–S53
Citation in format AMSBIB
\Bibitem{ArgSro22}
\by A.~V.~Arguchintsev, V.~A.~Srochko
\paper Solution of a Linear--Quadratic Problem on a Set of Piecewise Constant Controls with Parameterization of the Functional
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 3
\pages 5--16
\mathnet{http://mi.mathnet.ru/timm1923}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-3-5-16}
\elib{https://elibrary.ru/item.asp?id=49352747}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 319
\issue , suppl. 1
\pages S43--S53
\crossref{https://doi.org/10.1134/S0081543822060050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905214000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148380692}
Linking options:
  • https://www.mathnet.ru/eng/timm1923
  • https://www.mathnet.ru/eng/timm/v28/i3/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :26
    References:29
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025