Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 3, Pages 17–29
DOI: https://doi.org/10.21538/0134-4889-2022-28-3-17-29
(Mi timm1924)
 

Projection Method for Infinite-Horizon Economic Growth Problems

B. M. Arystanbekov, N. B. Melnikov

Lomonosov Moscow State University
References:
Abstract: A projection method is proposed for infinite-horizon economic growth problems. Exponentially discounted orthogonal Laguerre polynomials are used as the basis functions for the parameterization of the solution. The convergence of the method is studied numerically for integrable cases in the Ramsey model. It is shown that the best convergence of the method is achieved if the parameter in the exponent is chosen to be equal to the negative eigenvalue of the linearization matrix of the Hamiltonian system around a steady state at infinity. In the considered examples, the projection method leads to a system of equations with a small number of unknowns, in contrast to the methods using finite difference approximation.
Keywords: Galerkin method, Gauss–Laguerre quadrature, infinite-horizon control problem, transversality conditions, Ramsey model, CRRA utility function, Bernoulli transformation.
Received: 30.05.2022
Revised: 24.07.2022
Accepted: 01.08.2022
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2022, Volume 319, Issue 1, Pages S54–S65
DOI: https://doi.org/10.1134/S0081543822060062
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 65K10, 37N40, 93C95
Language: Russian
Citation: B. M. Arystanbekov, N. B. Melnikov, “Projection Method for Infinite-Horizon Economic Growth Problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 3, 2022, 17–29; Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S54–S65
Citation in format AMSBIB
\Bibitem{AryMel22}
\by B.~M.~Arystanbekov, N.~B.~Melnikov
\paper Projection Method for Infinite-Horizon Economic Growth Problems
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 3
\pages 17--29
\mathnet{http://mi.mathnet.ru/timm1924}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-3-17-29}
\elib{https://elibrary.ru/item.asp?id=49352748}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2022
\vol 319
\issue , suppl. 1
\pages S54--S65
\crossref{https://doi.org/10.1134/S0081543822060062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000905214000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148380893}
Linking options:
  • https://www.mathnet.ru/eng/timm1924
  • https://www.mathnet.ru/eng/timm/v28/i3/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :20
    References:25
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025