Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 2, Pages 84–95
DOI: https://doi.org/10.21538/0134-4889-2022-28-2-84-95
(Mi timm1906)
 

On Kolmogorov's inequality for the first and second derivatives on the axis and on the period

P. Yu. Glazyrina, N. S. Payuchenko

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: We study the inequality $\|y'\|_{L_q(G)}\le K(r,p, G) \|y\|_{L_r(G)}^{1/2}\|y'' \|_{L_p(G)}^{1/2}$ on the real line $G=\mathbb{R}$ and on the period $\mathbb{T}$ for $q\in [1,\infty)$, $r\in (0, \infty]$, $p\in[1, \infty ]$, and $1/r+1/p=2/q$. We prove that the exact constant $K(r,p,\mathbb{R})$ is equal to the exact constant $K_1$ in the inequality $\|u'\|_{L_q[0,1]}\le K_1 \|u\|_{ L_r[0,1]}^{1/2} \|u''\|_{L_p[0,1]}^{1/2}$ over the set of convex functions $u(x)$, $x\in [0,1]$, having an absolutely continuous derivative and satisfying the condition $u'(0)=u(1)=0$. As a consequence of this statement, the equality $K(r,p,\mathbb{R})=K(r,p,\mathbb{T})$ established in 2003 by V. F. Babenko, V. A. Kofanov, and S. A. Pichugov for $r\ge 1$, is extended to $r\ge 1/2$. In addition, we give a new proof of the equality $K(r,1,\mathbb{R})=(r+1)^{1/(2(r+1))}$ for $p=1$, $r\in [1,\infty)$, and $q=2r/(r+1)$, which was established by V. V. Arestov and V. I. Berdyshev in 1975.
Keywords: Kolmogorov's inequality, inequalities for norms of functions and their derivatives, exact constants, real axis, period.
Funding agency Grant number
Russian Foundation for Basic Research 20-31-90124
The reported study was funded by RFBR, project number 20-31-90124.
Received: 04.04.2022
Revised: 02.05.2022
Accepted: 04.05.2022
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 39B62
Language: Russian
Citation: P. Yu. Glazyrina, N. S. Payuchenko, “On Kolmogorov's inequality for the first and second derivatives on the axis and on the period”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 2, 2022, 84–95
Citation in format AMSBIB
\Bibitem{GlaPay22}
\by P.~Yu.~Glazyrina, N.~S.~Payuchenko
\paper On Kolmogorov's inequality for the first and second derivatives on the axis and on the period
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 2
\pages 84--95
\mathnet{http://mi.mathnet.ru/timm1906}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-2-84-95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4453859}
\elib{https://elibrary.ru/item.asp?id=48585950}
Linking options:
  • https://www.mathnet.ru/eng/timm1906
  • https://www.mathnet.ru/eng/timm/v28/i2/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024