Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Volume 28, Number 2, Pages 74–83
DOI: https://doi.org/10.21538/0134-4889-2022-28-2-74-83
(Mi timm1905)
 

On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$

V. V. Bitkina, A. K. Gutnova

North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz
References:
Abstract: A Shilla graph is a distance-regular graph $\Gamma$ (with valency $k$) of diameter $3$ that has second eigenvalue $\theta_1$ equal to $a=a_3$. In this case $a$ divides $k$ and the parameter $b=b(\Gamma)=k/a$ is defined. A Shilla graph has intersection array $\{ab,(a+1)(b-1),b_2;1,c_2,a(b-1)\}$. J. Koolen and J. Park showed that for fixed $b$ there are finitely many Shilla graphs. Admissible intersection arrays of Shilla graphs were found for $b\in \{2,3\}$ by Koolen and Park in 2010 and for $b\in \{4,5\}$ by A. A. Makhnev and I. N. Belousov in 2021. Makhnev and Belousov also proved the nonexistence of $Q$-polynomial Shilla graphs with $b=5$ and found $Q$-polynomial Shilla graphs with $b=6$. A $Q$‑polynomial Shilla graph with $b=6$ has intersection array $\{42t,5(7t+1),3(t+3);1,3(t+3),35t\}$ with $t\in \{7,12,17,27,57\}$, $\{372,315,75;1,15,310\}$, $\{744,625,125;1,25,620\}$, $\{930,780,150;1,30,775\}$, $\{312,265,48;$ $1,24,260\}$, $\{624,525,80;1,40,520\}$, $\{1794,1500,200;1,100,1495\}$, or $\{5694,4750,600;1,300,4745\}$. The nonexistence of graphs with intersection arrays $\{372,315,75;1,15,310\}$, $\{744,625,125;1,25,620\}$, $\{1794,1500,200;1,$ $100,1495\}$, and $\{42t,5(7t+1),3(t+3);1,3(t+3),35t\}$ was proved earlier. We prove that distance-regular graphs with intersection arrays $\{312,265,48;1,24,260\}$, $\{624,525,80;1,40,520\}$, and $\{930,780,150;1,30,775\}$ do not exist.
Keywords: Shilla graph, distance-regular graph, $Q$-polynomial graph.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-890
This study supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2022-890).
Received: 17.02.2022
Revised: 28.04.2022
Accepted: 30.04.2022
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 20D05
Language: Russian
Citation: V. V. Bitkina, A. K. Gutnova, “On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 28, no. 2, 2022, 74–83
Citation in format AMSBIB
\Bibitem{BitGut22}
\by V.~V.~Bitkina, A.~K.~Gutnova
\paper On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2022
\vol 28
\issue 2
\pages 74--83
\mathnet{http://mi.mathnet.ru/timm1905}
\crossref{https://doi.org/10.21538/0134-4889-2022-28-2-74-83}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4453858}
\elib{https://elibrary.ru/item.asp?id=48585949}
Linking options:
  • https://www.mathnet.ru/eng/timm1905
  • https://www.mathnet.ru/eng/timm/v28/i2/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024