Abstract:
The main goal of this paper is to verify a refined Marcinkiewicz–Zygmund type inequality with a quadratic error term
12nm−1∑j=0(xj+1−xj−1)w(xj)|tn(xj)|q=(1+O(m−2))π∫−πw(x)|tn(x)|qdx,2≤q<∞,
where tn is any trigonometric polynomial of degree at most n,−π=x0<x1<⋯<xmn=π,max0≤j≤mn−1(xj+1−xj)=O(1nm),m,n∈N, and w is a Jacobi type weight. Moreover, the quadratic error term O(m−2) is shown to be sharp, in general. In addition, similar results are given for q=∞ and in the multivariate case.
Keywords:
multivariate polynomials; Marcinkiewicz-Zygmund, Bernstein, and Schur type inequalities; discretization of Lp norm; doubling and Jacobi type weights.
\Bibitem{Kro20}
\by A.~V.~Kro\'o
\paper On a refinement of Marcinkiewicz-Zygmund type inequalities
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 196--209
\mathnet{http://mi.mathnet.ru/timm1775}
\elib{https://elibrary.ru/item.asp?id=44314668}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103676041}
Linking options:
https://www.mathnet.ru/eng/timm1775
https://www.mathnet.ru/eng/timm/v26/i4/p196
This publication is cited in the following 1 articles:
Kroo A., “On Discretizing Integral Norms of Exponential Sums”, J. Math. Anal. Appl., 507:2 (2022), 125770