Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 4, Pages 196–209 (Mi timm1775)  

This article is cited in 1 scientific paper (total in 1 paper)

On a refinement of Marcinkiewicz-Zygmund type inequalities

A. V. Kroó

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
Full-text PDF (214 kB) Citations (1)
References:
Abstract: The main goal of this paper is to verify a refined Marcinkiewicz–Zygmund type inequality with a quadratic error term
$$ \frac{1}{2}\sum_{j=0}^{nm-1}(x_{j+1}-x_{j-1})w(x_j)|t_n(x_{j})|^q=(1+O(m^{-2}))\int\limits_{-\pi}^{\pi}w(x)|t_n(x)|^q\,dx, \quad 2\leq q<\infty, $$
where $t_n$ is any trigonometric polynomial of degree at most $n, \ -\pi=x_0<x_1<\cdots <x_{mn}=\pi, \max\limits_{0\leq j\leq mn-1}(x_{j+1}-x_{j})=O\Big(\displaystyle\frac{1}{nm}\Big),\ m,n\in\mathbb{N}$, and $w$ is a Jacobi type weight. Moreover, the quadratic error term $O(m^{-2})$ is shown to be sharp, in general. In addition, similar results are given for $q=\infty$ and in the multivariate case.
Keywords: multivariate polynomials; Marcinkiewicz-Zygmund, Bernstein, and Schur type inequalities; discretization of $L^p$ norm; doubling and Jacobi type weights.
Received: 22.01.2020
Revised: 06.10.2020
Accepted: 12.10.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues)
DOI: https://doi.org/10.21538/0134-4889-2020-26-4-196-209
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A17, 41A63
Language: English
Citation: A. V. Kroó, “On a refinement of Marcinkiewicz-Zygmund type inequalities”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 196–209
Citation in format AMSBIB
\Bibitem{Kro20}
\by A.~V.~Kro\'o
\paper On a refinement of Marcinkiewicz-Zygmund type inequalities
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 196--209
\mathnet{http://mi.mathnet.ru/timm1775}
\elib{https://elibrary.ru/item.asp?id=44314668}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103676041}
Linking options:
  • https://www.mathnet.ru/eng/timm1775
  • https://www.mathnet.ru/eng/timm/v26/i4/p196
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :46
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024