Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 4, Pages 155–181
DOI: https://doi.org/10.21538/0134-4889-2020-26-4-155-181
(Mi timm1773)
 

Some supplements to S. B. Stechkin's inequalities in direct and inverse theorems on the approximation of continuous periodic functions

N. A. Ilyasova

a Baku State University
References:
Abstract: We give some supplements and comments to inequalities between elements of the sequence of best approximations $\{E_{n-1}(f)\}_{n=1}^{\infty}$ and the $k$th-order moduli of smoothness $\omega_k(f^{(r)};\delta),$ $\delta\in [0,+\infty)$, of a function $f\in C^r(\mathbb{T})$, where $k\in \mathbb{N},$ $r\in \mathbb{Z}_+$, $f^{(0)}\equiv f,$ $C^0(\mathbb{T})\equiv C(\mathbb{T}),$ and $\mathbb{T}=(-\pi,\pi]$, which were published by S. B. Stechkin in 1951 in the study of direct and inverse theorems of approximation of $2\pi$-periodic continuous functions. In particular, we prove the following results:
$\mathrm{(a)}$ the direct theorem or the Jackson–Stechkin inequality: $E_{n-1}(f)\le C_1(k)\omega_k(f;\pi/n)$, $n\in \mathbb{N}$, can be strengthened as $E_{n-1}(f)\le \rho_{n}^{(k)}(f)\equiv n^{-k}\max\{\nu^k E_{\nu-1}(f)\colon 1\le \nu\le n\}\le 2^kC_1(k)\omega_k(f;\pi/n),\ n\in \mathbb{N}$. This inequality is order-sharp on the class of all functions $f\in C(\mathbb{T})$ with a given majorant or with a given decrease order of the modulus of smoothness $\omega_k(f;\delta)$; namely: for any $k\in \mathbb{N}$ and $\omega\in \Omega_k(0,\pi]$, there exists a function $f_0(\,{\cdot}\,;\omega)\in C(\mathbb{T})$ ($f_0$ is even for odd $k$ and is odd for even $k$) such that $\omega_k(f_0;\delta)\asymp C_2(k)\omega(\delta)$, $\delta\in (0,\pi]$. Moreover, order equalities hold: $E_{n-1}(f_0)\asymp C_3(k)\rho_n^{(k)}(f_0)\asymp C_4(k)\omega_k(f_0;\pi/n)\asymp C_5(k)\omega(\pi/n),\ n\in \mathbb{N}$, where $\Omega_k(0,\pi]$ is the class of functions $\omega=\omega(\delta)$ defined on $(0,\pi]$ and such that $0<\omega(\delta)\!\downarrow\!0$ $(\delta\downarrow\!0)$ and $\delta^{-k}\omega(\delta)\!\downarrow$ $(\delta \uparrow)$;
$\mathrm{(b)}$ a necessary and sufficient condition under which the inverse theorem (without the derivatives), or the Salem–Stechkin inequality $\omega_k(f;\pi/n)\le C_6(k)n^{-k}\sum_{\nu=1}^n\nu^{k-1}E_{\nu-1}(f)$, $n\in \mathbb{N}$, holds is Stechkin's inequality $\|T_n^{(k)}(f)\|\le C_7(k) \sum_{\nu=1}^{n}\nu^{k-1}E_{\nu-1}(f),\ n\in \mathbb{N}$, where $T_n(f)\equiv T_n(f;x)$ is a trigonometric polynomial of best $C(\mathbb{T})$-approximation to the function $f$ (i.e., $\|f-T_n(f)\|=E_n(f),\ n\in \mathbb{Z}_+$);
$\mathrm{(c)}$ the inverse theorem (with the derivatives), or the Vallée-Poussin–Stechkin inequality $\omega_k(f^{(r)};$ $\pi/n)\le C_8(k,r)\big\{ n^{-k}\sum_{\nu=1}^{n}\nu^{k+r-1}E_{\nu-1}(f)+\sum_{\nu=n+1}^{\infty}\nu^{r-1}E_{\nu-1}(f)\big\}$ for any $n\in \mathbb{N}$, as well as Stechkin's earlier inequality $E_{n-1}(f^{(r)})\le C_9(r)\big\{ n^r E_{n-1}(f)+\sum_{\nu=n+1}^{\infty}\nu^{r-1}E_{\nu-1}(f)\big\},\ n\in \mathbb{N}$, where $E(f;r)\equiv$ $ \sum_{n=1}^{\infty}n^{r-1}E_{n-1}(f)<\infty$ (by S. N. Bernstein's theorem, this inequality guarantees that $f$ lies in $C^r(\mathbb{T})$, where $r\in\mathbb{N}$) can be supplemented with the following key inequalities: $\|f^{(r)}\|\le C_{10}(r)E(f;r)$ and $\|T_n^{(r)}(f)\|\le C_{7}(r)\sum_{\nu=1}^n\nu^{r-1}E_{\nu-1}(f)$, $n\in\mathbb{N}$. Moreover, all the inequalities formulated in this paragraph are pairwise equivalent; i.e., any of these inequalities implies any other and, hence, all the inequalities.
Keywords: best approximation, modulus of smoothness, direct theorem, inverse theorem, order equality, equivalent inequalities, order-sharp inequality on a class.
Received: 02.06.2020
Revised: 28.08.2020
Accepted: 21.09.2020
Bibliographic databases:
Document Type: Article
UDC: 517.518.832
Language: Russian
Citation: N. A. Ilyasov, “Some supplements to S. B. Stechkin's inequalities in direct and inverse theorems on the approximation of continuous periodic functions”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 155–181
Citation in format AMSBIB
\Bibitem{Ily20}
\by N.~A.~Ilyasov
\paper Some supplements to S. B. Stechkin's inequalities in direct and inverse theorems on the approximation of continuous periodic functions
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 155--181
\mathnet{http://mi.mathnet.ru/timm1773}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-4-155-181}
\elib{https://elibrary.ru/item.asp?id=44314666}
Linking options:
  • https://www.mathnet.ru/eng/timm1773
  • https://www.mathnet.ru/eng/timm/v26/i4/p155
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :110
    References:49
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024