Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 4, Pages 106–125
DOI: https://doi.org/10.21538/0134-4889-2020-26-4-106-125
(Mi timm1770)
 

This article is cited in 5 scientific papers (total in 5 papers)

Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives

M. I. Gomoyunovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (296 kB) Citations (5)
References:
Abstract: The Cauchy problem is considered for a homogeneous Hamilton–Jacobi equation with fractional-order coinvariant derivatives, which arises in problems of dynamic optimization of systems described by differential equations with Caputo fractional derivatives. A generalized solution of the problem in the minimax sense is defined. It is proved that such a solution exists, is unique, depends continuously on the parameters of the problem, and is consistent with the classical solution. An infinitesimal criterion of the minimax solution is obtained in the form of a pair of differential inequalities for suitable directional derivatives. An illustrative example is given.
Keywords: Hamilton–Jacobi equations, generalized solutions, coinvariant derivatives, fractional derivatives.
Funding agency Grant number
Russian Science Foundation 19-71-00073
This work was supported by RSF (project no. 19-71-00073).
Received: 17.08.2020
Revised: 15.10.2020
Accepted: 26.10.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 315, Issue 1, Pages S97–S116
DOI: https://doi.org/10.1134/S0081543821060092
Bibliographic databases:
Document Type: Article
UDC: 517.952
MSC: 35F1, 34A08, 26A33
Language: Russian
Citation: M. I. Gomoyunov, “Minimax Solutions of Homogeneous Hamilton–Jacobi Equations with Fractional-Order Coinvariant Derivatives”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 106–125; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S97–S116
Citation in format AMSBIB
\Bibitem{Gom20}
\by M.~I.~Gomoyunov
\paper Minimax Solutions of Homogeneous Hamilton--Jacobi Equations with Fractional-Order Coinvariant Derivatives
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 106--125
\mathnet{http://mi.mathnet.ru/timm1770}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-4-106-125}
\elib{https://elibrary.ru/item.asp?id=44314663}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S97--S116
\crossref{https://doi.org/10.1134/S0081543821060092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000609903100008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103631012}
Linking options:
  • https://www.mathnet.ru/eng/timm1770
  • https://www.mathnet.ru/eng/timm/v26/i4/p106
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :43
    References:36
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024