Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 4, Pages 126–137
DOI: https://doi.org/10.21538/0134-4889-2020-26-4-126-137
(Mi timm1771)
 

This article is cited in 9 scientific papers (total in 9 papers)

Bounds of the Nikol'skii Polynomial Constants in $L^{p}$ with Gegenbauer Weight

D. V. Gorbachevab, I. A. Martyanovb

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Tula State University
Full-text PDF (236 kB) Citations (9)
References:
Abstract: We study bounds and the asymptotic behavior as $n\to \infty$ of a sharp Nikol'skii constant in the inequality $\|u\|_{\infty}\le \mathcal{C}_{\alpha}(n)\|u\|_{p}$ for trigonometric and algebraic polynomials of degree at most $n$ in the space $L^{p}$ on $(-\pi,\pi]$ with the periodic Gegenbauer weight $|\!\sin x|^{2\alpha+1}$ and on $ [-1,1] $ with the algebraic Gegenbauer weight $(1-x^{2})^{\alpha}$, respectively. We prove that $\mathcal{C}_{\alpha}(n)\sim \mathcal{L}_{p}n^{(2\alpha+2)/p}$ for $p\ge 1$ and all $\alpha\ge-1/2$, where $\mathcal{L}_{p}$ is a sharp Nikol'skii constant for entire functions of exponential type at most $1$ in the space $L^{p}$ on $\mathbb{R}$ with the power weight $|x|^{2\alpha+1}$. Moreover, we give explicit bounds of the form
$$ n^{(2\alpha+2)/p}\mathcal{L}_{p}\le \mathcal{C}_{\alpha}(n)\le (n+2s_{p,\alpha})^{(2\alpha+2)/p}\mathcal{L}_{p},\quad n\ge 0, $$
from which this asymptotics follows. These bounds make it possible to refine the known estimates of the Nikol'skii constants. We consider this approach using the example of the algebraic Nikol'skii constant for $\alpha=0$. Here we apply the characterization of the extremal polynomials from the works of D. Amir and Z. Ziegler and of V.V. Arestov and M.V. Deikalova. Our statements generalize the well-known results of S.B. Stechkin ($p=1$) and E. Levin and D. Lubinsky ($p>0$) in the trigonometric case for $\alpha=-1/2$ and M.I. Ganzburg in the algebraic case for $\alpha=0$. For half-integer $\alpha=d/2-1$ and $p\ge 1$, our asymptotics can be derived from the asymptotics of the multidimensional Nikol'skii constant for spherical polynomials in the space $L^{p}$ on the sphere $\mathbb{S}^{d}$ proved by F. Dai, D. Gorbachev, and S. Tikhonov. Our proof is much simpler, but it does not cover the case $p<1$.
Keywords: Nikol'skii inequality, sharp constant, asymptotic behavior, trigonometric polynomial, algebraic polynomial, entire function of exponential type, Gegenbauer weight.
Funding agency Grant number
Ural Mathematical Center
Russian Foundation for Basic Research 19-31-90152
The work of D.V. Gorbachev was supported as a part of the research carried out at the Ural Mathematical Center. The work of I.A. Martyanov was supported by the Russian Foundation for Basic Research (project no. 19-31-90152).
Received: 13.09.2020
Revised: 02.11.2020
Accepted: 09.11.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 315, Issue 1, Pages S117–S127
DOI: https://doi.org/10.1134/S0081543821060109
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 41A17, 42B10
Language: Russian
Citation: D. V. Gorbachev, I. A. Martyanov, “Bounds of the Nikol'skii Polynomial Constants in $L^{p}$ with Gegenbauer Weight”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 126–137; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S117–S127
Citation in format AMSBIB
\Bibitem{GorMar20}
\by D.~V.~Gorbachev, I.~A.~Martyanov
\paper Bounds of the Nikol'skii Polynomial Constants in $L^{p}$ with Gegenbauer Weight
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 4
\pages 126--137
\mathnet{http://mi.mathnet.ru/timm1771}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-4-126-137}
\elib{https://elibrary.ru/item.asp?id=44314664}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S117--S127
\crossref{https://doi.org/10.1134/S0081543821060109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000609903100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100384847}
Linking options:
  • https://www.mathnet.ru/eng/timm1771
  • https://www.mathnet.ru/eng/timm/v26/i4/p126
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :46
    References:23
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024