Abstract:
Earlier the authors proved the equivalence of a sustainable exploitation problem for a system of renewable resources and a certain mathematical program. In this paper we study the properties of a map describing the dependence of the state vector of the system on the control. In the particular case of a structured population described by the binary Leslie model, conditions for the objective function are characterized under which there are optimal controls preserving all structural divisions of the system. In this case, we use the notion of local irreducibility, which generalizes the classical notion of map irreducibility.
Citation:
V. D. Mazurov, A. I. Smirnov, “A Criterion for the Existence of Nondestructive Controls in the Problem of Optimal Exploitation of a Binary-Structured System”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 101–117; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S203–S218
\Bibitem{MazSmi20}
\by V.~D.~Mazurov, A.~I.~Smirnov
\paper A Criterion for the Existence of Nondestructive Controls in the Problem of Optimal Exploitation of a Binary-Structured System
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 3
\pages 101--117
\mathnet{http://mi.mathnet.ru/timm1749}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-3-101-117}
\elib{https://elibrary.ru/item.asp?id=43893867}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S203--S218
\crossref{https://doi.org/10.1134/S008154382106016X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592231900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095679162}
Linking options:
https://www.mathnet.ru/eng/timm1749
https://www.mathnet.ru/eng/timm/v26/i3/p101
This publication is cited in the following 3 articles: