Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 3, Pages 91–100
DOI: https://doi.org/10.21538/0134-4889-2020-26-3-91-100
(Mi timm1748)
 

This article is cited in 3 scientific papers (total in 3 papers)

Nonassociative enveloping algebras of Chevalley algebras

V. M. Levchuka, G. S. Suleimanovab, N. D. Hodyunyaa

a Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
b Khakas Technical Institute
Full-text PDF (228 kB) Citations (3)
References:
Abstract: An algebra $R$ is said to be an exact enveloping algebra for a Lie algebra $L$ if $L$ is isomorphic to the algebra $R^{(-)}$ obtained by replacing the multiplication in $R$ by the commutation: $a*b:= ab- ba$. We study exact enveloping algebras of certain subalgebras of a Chevalley algebra over a field $K$ associated with an indecomposable root system $\Phi$. The structure constants of the Chevalley basis of this algebra are chosen with a certain arbitrariness for the niltriangular subalgebra $N\Phi(K)$ with the basis $\{e_r\ |\ r\in\Phi^+\}$. The exact enveloping algebras $R$ for $N\Phi(K)$, which were found in 2018, depend on this choice. The notion of standard enveloping algebra is introduced. For the type $A_{n-1}$, one of the exact enveloping algebras $R$ is the algebra $NT(n,K)$ of all niltriangular $n\times n$ matrices over $K$. The theorem of R. Dubish and S. Perlis on the ideals of $NT(n,K)$ states that $R$ is standard in this case. We prove that an associative exact enveloping algebra $R$ of a Lie algebra $NT(n,K)$ of type $A_{n-1}$ $(n>3)$ is unique and isomorphic to $NT(n,K)$ up to passing to the opposite algebra $R^{({\rm op})}$. Standard enveloping algebras $R$ are described. The existence of a standard enveloping algebra is proved for the Lie algebras $N\Phi(K)$ of all types excepting $D_{n}$ $(n\geq 4)$ and $E_{n}$ $(n=6,7,8)$.
Keywords: Lie algebra, exact enveloping algebra, Chevalley algebra, niltriangular subalgebra, standard ideal.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2020-1534/1
This work was supported by the Krasnoyarsk Mathematical Center, which is financed by the Ministry of Science and Higher Education of the Russian Federation within the project for the establishment and development of regional centers for mathematical research and education (agreement no. 075-02-2020-1534/1).
Received: 11.12.2019
Revised: 11.05.2020
Accepted: 03.08.2020
Bibliographic databases:
Document Type: Article
UDC: 512.554.3
MSC: 17B05, 17B30
Language: Russian
Citation: V. M. Levchuk, G. S. Suleimanova, N. D. Hodyunya, “Nonassociative enveloping algebras of Chevalley algebras”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 91–100
Citation in format AMSBIB
\Bibitem{LevSulHod20}
\by V.~M.~Levchuk, G.~S.~Suleimanova, N.~D.~Hodyunya
\paper Nonassociative enveloping algebras of Chevalley algebras
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 3
\pages 91--100
\mathnet{http://mi.mathnet.ru/timm1748}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-3-91-100}
\elib{https://elibrary.ru/item.asp?id=43893866}
Linking options:
  • https://www.mathnet.ru/eng/timm1748
  • https://www.mathnet.ru/eng/timm/v26/i3/p91
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024