Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 3, Pages 32–43
DOI: https://doi.org/10.21538/0134-4889-2020-26-3-32-43
(Mi timm1743)
 

On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$

V. I. Zenkovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: According to P. Hall, a subgroup $H$ of a finite group $G$ is called pronormal in $G$ if, for any element $g$ of $G$, the subgroups $H$ and $H^g$ are conjugate in $\langle H,H^g\rangle$. The simplest examples of pronormal subgroups of finite groups are normal subgroups, maximal subgroups, and Sylow subgroups. Pronormal subgroups of finite groups were studied by a number of authors. For example, Legovini (1981) studied finite groups in which every subgroup is subnormal or pronormal. Later, Li and Zhang (2013) described the structure of a finite group $G$ in which, for a second maximal subgroup $H$, its index in $\langle H,H^g\rangle$ does not contain squares for any $g$ from $G$. A number of papers by Kondrat'ev, Maslova, Revin, and Vdovin (2012–2019) are devoted to studying the pronormality of subgroups in a finite simple nonabelian group and, in particular, the existence of a nonpronormal subgroup of odd index in a finite simple nonabelian group. In {The Kourovka Notebook}, the author formulated Question 19.109 on the equivalence in a finite simple nonabelian group of the condition of pronormality of its second maximal subgroups and the condition of Hallness of its maximal subgroups. Tyutyanov gave a counterexample $L_2(2^{11})$ to this question. In the present paper, we provide necessary and sufficient conditions for the pronormality of second maximal subgroups in the group $L_2(q)$. In addition, for $q\le 11$, we find the finite almost simple groups with socle $L_2(q)$ in which all second maximal subgroups are pronormal.
Keywords: finite group, simple group, maximal subgroup, pronormal subgroup.
Funding agency Grant number
Ural Federal University named after the First President of Russia B. N. Yeltsin 02.А03.210006
This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Received: 29.10.2019
Revised: 11.07.2020
Accepted: 03.08.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 315, Issue 1, Pages S250–S260
DOI: https://doi.org/10.1134/S0081543821060201
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20D06, 20D30, 20E28
Language: Russian
Citation: V. I. Zenkov, “On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 32–43; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S250–S260
Citation in format AMSBIB
\Bibitem{Zen20}
\by V.~I.~Zenkov
\paper On the Pronormality of Second Maximal Subgroups in Finite Groups with Socle $L_2(q)$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 3
\pages 32--43
\mathnet{http://mi.mathnet.ru/timm1743}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-3-32-43}
\elib{https://elibrary.ru/item.asp?id=43893861}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S250--S260
\crossref{https://doi.org/10.1134/S0081543821060201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592231900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095700272}
Linking options:
  • https://www.mathnet.ru/eng/timm1743
  • https://www.mathnet.ru/eng/timm/v26/i3/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :30
    References:30
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024