Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 3, Pages 23–31
DOI: https://doi.org/10.21538/0134-4889-2020-26-3-23-31
(Mi timm1742)
 

Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$

K. S. Efimova, A. A. Makhnevbc

a Ural State University of Economics, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
References:
Abstract: A distance-regular graph $\Gamma$ of diameter 3 is called a Shilla graph if it has the second eigenvalue $\theta_1=a_3$. In this case $a=a_3$ divides $k$ and we set $b=b(\Gamma)=k/a$. Koolen and Park obtained the list of intersection arrays for Shilla graphs with $b=3$. There exist graphs with intersection arrays $\{12,10,5;1,1,8\}$ and $\{12,10,3;1,3,8\}$. The nonexistence of graphs with intersection arrays $\{12,10,2;1,2,8\}$, $\{27,20,10;1,2,18\}$, $\{42,30,12;1,6,28\}$, and $\{105,72,24;1,12,70\}$ was proved earlier. In this paper, we study the automorphisms of a distance-regular graph $\Gamma$ with intersection array $\{30,22,9;1,3,20\}$, which is a Shilla graph with $b=3$. Assume that $a$ is a vertex of $\Gamma$, $G={\rm Aut}(\Gamma)$ is a nonsolvable group, $\bar G=G/S(G)$, and $\bar T$ is the socle of $\bar G$. Then $\bar T\cong L_2(7)$, $A_7$, $A_8$, or $U_3(5)$. If $\Gamma$ is arc-transitive, then $T$ is an extension of an irreducible $F_2U_3(5)$-module $V$ by $U_3(5)$ and the dimension of $V$ over $F_3$ is 20, 28, 56, 104, or 288.
Keywords: Shilla graph, graph automorphism.
Funding agency Grant number
Russian Foundation for Basic Research 20-51-53013
This work was supported by the Russian Foundation for Basic Research – the National Natural Science Foundation of China (project no. 20-51-53013_a).
Received: 02.03.2020
Revised: 26.05.2020
Accepted: 15.06.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 315, Issue 1, Pages S89–S96
DOI: https://doi.org/10.1134/S0081543821060080
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 05C25
Language: Russian
Citation: K. S. Efimov, A. A. Makhnev, “Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 23–31; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S89–S96
Citation in format AMSBIB
\Bibitem{EfiMak20}
\by K.~S.~Efimov, A.~A.~Makhnev
\paper Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 3
\pages 23--31
\mathnet{http://mi.mathnet.ru/timm1742}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-3-23-31}
\elib{https://elibrary.ru/item.asp?id=43893860}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 315
\issue , suppl. 1
\pages S89--S96
\crossref{https://doi.org/10.1134/S0081543821060080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592231900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095685665}
Linking options:
  • https://www.mathnet.ru/eng/timm1742
  • https://www.mathnet.ru/eng/timm/v26/i3/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :37
    References:32
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024