|
Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$
K. S. Efimova, A. A. Makhnevbc a Ural State University of Economics, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
c Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Abstract:
A distance-regular graph $\Gamma$ of diameter 3 is called a Shilla graph if it has the second eigenvalue $\theta_1=a_3$. In this case $a=a_3$ divides $k$ and we set $b=b(\Gamma)=k/a$. Koolen and Park obtained the list of intersection arrays for Shilla graphs with $b=3$. There exist graphs with intersection arrays $\{12,10,5;1,1,8\}$ and $\{12,10,3;1,3,8\}$. The nonexistence of graphs with intersection arrays $\{12,10,2;1,2,8\}$, $\{27,20,10;1,2,18\}$, $\{42,30,12;1,6,28\}$, and $\{105,72,24;1,12,70\}$ was proved earlier. In this paper, we study the automorphisms of a distance-regular graph $\Gamma$ with intersection array $\{30,22,9;1,3,20\}$, which is a Shilla graph with $b=3$. Assume that $a$ is a vertex of $\Gamma$, $G={\rm Aut}(\Gamma)$ is a nonsolvable group, $\bar G=G/S(G)$, and $\bar T$ is the socle of $\bar G$. Then $\bar T\cong L_2(7)$, $A_7$, $A_8$, or $U_3(5)$. If $\Gamma$ is arc-transitive, then $T$ is an extension of an irreducible $F_2U_3(5)$-module $V$ by $U_3(5)$ and the dimension of $V$ over $F_3$ is 20, 28, 56, 104, or 288.
Keywords:
Shilla graph, graph automorphism.
Received: 02.03.2020 Revised: 26.05.2020 Accepted: 15.06.2020
Citation:
K. S. Efimov, A. A. Makhnev, “Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9;1,3,20\}$”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 3, 2020, 23–31; Proc. Steklov Inst. Math. (Suppl.), 315, suppl. 1 (2021), S89–S96
Linking options:
https://www.mathnet.ru/eng/timm1742 https://www.mathnet.ru/eng/timm/v26/i3/p23
|
Statistics & downloads: |
Abstract page: | 170 | Full-text PDF : | 37 | References: | 32 | First page: | 1 |
|