Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 2, Pages 56–67
DOI: https://doi.org/10.21538/0134-4889-2020-26-2-56-67
(Mi timm1721)
 

This article is cited in 2 scientific papers (total in 2 papers)

Bipartite threshold graphs

V. A. Baranskii, T. A. Senchonok

Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
Full-text PDF (232 kB) Citations (2)
References:
Abstract: A triple of distinct vertices $(x,v,y)$ in a graph $G=(V,E)$ such that $xv\in E$ and $vy\notin E$ is called lifting if $\mathrm{deg}(x)\leq \mathrm{deg}(y)$ and lowering if $\mathrm{deg}(x)\geq 2+\mathrm{deg}(y)$. A transformation $\varphi$ of a graph $G$ that replaces $G$ with $\varphi(G)=G-xv+vy$ is called an edge rotation corresponding to a triple of vertices $(x,v,y)$. For a lifting (lowering) triple $(x,v,y)$, the corresponding edge rotation is called lifting (lowering). An edge rotation in a graph $G$ is lifting if and only if its inverse in the graph $\varphi(G)$ is lowering. A bipartite graph $H=(V_1,E,V_2)$ is called a bipartite threshold graph if it has no lifting triples such that $x,y\in V_1$ and $v\in V_2$ or $x, y\in V_2$ and $v\in V_1$. The aim of paper is to give some characteristic properties of bipartite threshold graphs. In particular, every such graph $(V_1,E,V_2)$ is embedded in the threshold graph $(K(V_1),E,V_2)$, where $K(V_1)$ is the complete graph on the vertex set $V_1$. Note that a graph is a threshold graph if and only if it has no lifting triples of vertices. Every bipartite graph can be obtained from a bipartite threshold graph by means of lowering edge rotations. Using the obtained results and Kohnert's criterion for a partition to be graphical, we give a new simple proof of the well-known Gale–Ryser theorem on the representation of two partitions by degree partitions of the parts in a bipartite graph.
Keywords: integer partition, threshold graph, bipartite graph, Ferrer's diagram.
Received: 15.03.2020
Revised: 08.05.2020
Accepted: 18.05.2020
Bibliographic databases:
Document Type: Article
UDC: 519.176
MSC: 05C35
Language: Russian
Citation: V. A. Baranskii, T. A. Senchonok, “Bipartite threshold graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 56–67
Citation in format AMSBIB
\Bibitem{BarSen20}
\by V.~A.~Baranskii, T.~A.~Senchonok
\paper Bipartite threshold graphs
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 56--67
\mathnet{http://mi.mathnet.ru/timm1721}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-56-67}
\elib{https://elibrary.ru/item.asp?id=42950647}
Linking options:
  • https://www.mathnet.ru/eng/timm1721
  • https://www.mathnet.ru/eng/timm/v26/i2/p56
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025