Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 2, Pages 47–55
DOI: https://doi.org/10.21538/0134-4889-2020-26-2-47-55
(Mi timm1720)
 

Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere

V. V. Arestovab, A. A. Selezneva

a Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We consider the problem of extending algebraic polynomials from the unit sphere of the Euclidean space of dimension $m\ge 2$ to a concentric sphere of radius $r\ne1$ with the smallest value of the $L^2$-norm. An extension of an arbitrary polynomial is found. As a result, we obtain the best extension of a class of polynomials of given degree $n\ge 1$ whose norms in the space $L^2$ on the unit sphere do not exceed 1. We show that the best extension equals $r^n$ for $r>1$ and $r^{n-1}$ for $0<r<1$. We describe the best extension method. A.V. Parfenenkov obtained in 2009 a similar result in the uniform norm on the plane ($m=2$).
Keywords: polynomial, Euclidean sphere, $L^2$-norm, best extension.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
Russian Foundation for Basic Research 18-01-00336
This work was supported by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University). The research of the first author was also supported by the Russian Foundation for Basic Research (project no. 18-01-00336).
Received: 10.01.2020
Revised: 10.02.2020
Accepted: 17.02.2020
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2021, Volume 313, Issue 1, Pages S6–S13
DOI: https://doi.org/10.1134/S0081543821030020
Bibliographic databases:
Document Type: Article
UDC: 517.518.86
MSC: 41A63, 41A99, 26C05
Language: Russian
Citation: V. V. Arestov, A. A. Seleznev, “Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 47–55; Proc. Steklov Inst. Math. (Suppl.), 313, suppl. 1 (2021), S6–S13
Citation in format AMSBIB
\Bibitem{AreSel20}
\by V.~V.~Arestov, A.~A.~Seleznev
\paper Best $L^2$-Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 2
\pages 47--55
\mathnet{http://mi.mathnet.ru/timm1720}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-2-47-55}
\elib{https://elibrary.ru/item.asp?id=42950646}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2021
\vol 313
\issue , suppl. 1
\pages S6--S13
\crossref{https://doi.org/10.1134/S0081543821030020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000544885600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090518674}
Linking options:
  • https://www.mathnet.ru/eng/timm1720
  • https://www.mathnet.ru/eng/timm/v26/i2/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:203
    Full-text PDF :38
    References:37
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024