Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Volume 26, Number 1, Pages 102–111
DOI: https://doi.org/10.21538/0134-4889-2020-26-1-102-111
(Mi timm1702)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters

A. R. Danilin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (212 kB) Citations (2)
References:
Abstract: We consider a problem of optimal boundary control for solutions of an elliptic type equation in a bounded domain with smooth boundary with a small coefficient at the Laplace operator, a small coefficient, cosubordinate with the first, at the boundary condition, and integral constraints on the control:
$$ \left\{
\begin {array}{ll} \displaystyle \mathcal {L}_\varepsilon \mathop {:=} \nolimits - \varepsilon^2 \Delta z + a(x) z = f(x), & \displaystyle x\in \Omega,\quad z \in H^1 (\Omega), \\[3ex] \displaystyle l_{\varepsilon,\beta} z\mathop {:=} \nolimits \varepsilon^\beta \frac{\partial z}{\partial n} = g(x) + u(x), & x\in\Gamma, \end {array}
 \right. $$

$$ J(u) \mathop {:=} \nolimits \|z-z_d\|^2 + \nu^{-1}|||u|||^2 \to \inf, \quad u \in \mathcal {U}, $$
where $0<\varepsilon\ll 1$, $\beta\geqslant 0$, $\beta\in\mathbb{Q}$, $\nu>0,$ $H^1 (\Omega)$ is the Sobolev function space, $\partial z/\partial n$ is the derivative of $z$ at the point $x\in\Gamma$ in the direction of the outer (with respect to the domain $\Omega$) normal,
$$
\begin {array}{c} \displaystyle a(\cdot), f(\cdot) \in C^\infty(\overline{\Omega}), \quad g(\cdot)\in C^\infty(\Gamma),\quad \forall\, x\in \overline{\Omega}\quad a(x)\geqslant \alpha^2>0, \\[2ex] \displaystyle \mathcal {U} = \mathcal {U}_1,\quad \mathcal {U}_r\mathop {:-} \nolimits \{u(\cdot)\in L_2(\Gamma)\colon |||u||| \leqslant r \}. \end {array}
$$
Here $\|\cdot\|$ and $|||\cdot|||$ are the norms in the spaces $L_2(\Omega)$ and $L_2(\Gamma)$, respectively. We find the complete asymptotic expansion of the solution of the problem in the powers of the small parameter in the case where $0<\beta<3/2$.
Keywords: singular problems, optimal control, boundary value problems for systems of partial differential equations, asymptotic expansions.
Received: 04.11.2019
Revised: 10.01.2020
Accepted: 14.01.2020
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. R. Danilin, “Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 1, 2020, 102–111
Citation in format AMSBIB
\Bibitem{Dan20}
\by A.~R.~Danilin
\paper Asymptotics of a solution to a problem of optimal boundary control with two small cosubordinate parameters
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2020
\vol 26
\issue 1
\pages 102--111
\mathnet{http://mi.mathnet.ru/timm1702}
\crossref{https://doi.org/10.21538/0134-4889-2020-26-1-102-111}
\elib{https://elibrary.ru/item.asp?id=42492196}
Linking options:
  • https://www.mathnet.ru/eng/timm1702
  • https://www.mathnet.ru/eng/timm/v26/i1/p102
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :35
    References:36
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024