Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 4, Pages 235–248
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-235-248
(Mi timm1689)
 

This article is cited in 4 scientific papers (total in 4 papers)

Haimovich-Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces of a fixed doubling dimension

M. Yu. Khachayabc, Yu. Yu. Ogorodnikovab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
c Omsk State Technical University
Full-text PDF (255 kB) Citations (4)
References:
Abstract: The Capacitated Vehicle Routing Problem (CVRP) is a classical extremal combinatorial routing problem with numerous applications in operations research. Although the CVRP is strongly NP-hard both in the general case and in the Euclidean plane, it admits quasipolynomial- and even polynomial-time approximation schemes (QPTAS and PTAS) in Euclidean spaces of fixed dimension. At the same time, the metric setting of the problem is APX-complete even for an arbitrary fixed capacity $q\geq 3$. In this paper, we show that the classical Haimovich–Rinnooy Kan algorithm implements a PTAS and an Efficient Polynomial-Time Approximation Scheme (EPTAS) in an arbitrary metric space of fixed doubling dimension for $q=o(\log\log n)$ and for an arbitrary constant capacity, respectively.
Keywords: Capacitated Vehicle Routing Problem (CVRP), Polynomial-Time Approximation Scheme (PTAS), metric space, doubling dimension.
Funding agency Grant number
Russian Foundation for Basic Research 19-07-01243
17-08-01385
This research is supported by the Russian Foundation for Basic Research (projects no. 19-07-01243 and 17-08-01385).
Received: 30.08.2019
Revised: 30.09.2019
Accepted: 07.10.2019
Bibliographic databases:
Document Type: Article
UDC: 519.16 + 519.85
MSC: 90C27, 90C59, 90B06
Language: Russian
Citation: M. Yu. Khachay, Yu. Yu. Ogorodnikov, “Haimovich-Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces of a fixed doubling dimension”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 235–248
Citation in format AMSBIB
\Bibitem{KhaOgo19}
\by M.~Yu.~Khachay, Yu.~Yu.~Ogorodnikov
\paper Haimovich-Rinnooy Kan polynomial-time approximation scheme for the CVRP in metric spaces of a fixed doubling dimension
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 4
\pages 235--248
\mathnet{http://mi.mathnet.ru/timm1689}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-235-248}
\elib{https://elibrary.ru/item.asp?id=41455540}
Linking options:
  • https://www.mathnet.ru/eng/timm1689
  • https://www.mathnet.ru/eng/timm/v25/i4/p235
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :58
    References:22
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024