Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 4, Pages 249–254
DOI: https://doi.org/10.21538/0134-4889-2019-25-4-249-254
(Mi timm1690)
 

Some Schurian association schemes related to Suzuki and Ree groups

L. Yu. Tsiovkina

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: An association scheme is a pair $(\Omega,\mathcal{R})$ consisting of a finite set $\Omega$ and a set $\mathcal{R}=\{R_0,R_1\ldots, R_s\}$ of binary relations on $\Omega$ satisfying the following conditions: (1) $\mathcal{R}$ is a partition of the set $\Omega^2$; (2) $\{(x,x)\ |\ x\in \Omega\}\in \mathcal{R}$; (3) ${R_t}^T=\{(y,x)\ |\ (x,y)\in R_t\}\in {\mathcal R}$ for all $0\le t\le s$; (4) for all $0\le i,j,t\le s$, there exist constants $c_{ij}^t$ (called the intersection numbers of the scheme) such that $c_{ij}^t=|\{z\in \Omega| (x,z)\in R_i, (z,y)\in R_j\}|$ for any pair $(x,y)\in R_t$. An association scheme $(\Omega,\mathcal{R})$ is called Schurian if, for some permutation group on $\Omega$, the set of orbitals of this group on $\Omega$ coincides with $\mathcal{R}$. This work is devoted to the study of Schurian association schemes related to Suzuki groups $Sz(q)$ and Ree groups ${^2G}_2(q)$ with $q>3$ for which some graphs of their basic relations are antipodal distance-regular graphs of diameter 3. Assume that $G$ is one of the mentioned groups, $r=(q-1)_{2'}$, $B$ is a Borel subgroup of $G$, $U$ is a unipotent subgroup of $G$ contained in $B$, $K$ is a subgroup of $B$ with index $r$, $g$ is an involution in $G-B$, and $f$ is an element of order $r$ in $B\cap B^g$. Let $\Omega$ be the set of the right $K$-cosets of $G$, and put $h_i=f^i$ and $h_{r+i}=gf^i$ for all $i\in \{0,\ldots,r-1\}$. Denote by ${\mathcal{R}}$ the set $\{R_0,R_1,\ldots, R_{2r-1}\}$ of binary relations on $\Omega$ defined for each $t\in \{0,1,\ldots,2r-1\}$ by the rule: $(Kx,Ky)\in R_t$ if and only if $xy^{-1}$ is contained in the double coset $Kh_tK$. We prove that ${\mathcal X}=(\Omega, {\mathcal{R}})$ is a Schurian association scheme and its set of basic relations coincides with the set of orbitals of $G$ on $\Omega$. We find that the intersection number $c_{ij}^t$, where $0\le i,j,t\le 2r-1$, of the scheme ${\mathcal X}$ is $|U|$ if $t\le r-1$, $i,j\ge r$, and $j-i\equiv t \pmod r$; $(|U|-1)/r$ if $ i,j,t\ge r$; 1 if either $t\le r-1$, $i,j\le r-1$, and $ i+j\equiv t \pmod r$, or $i\le r-1$, $t,j\ge r$, and $ j-i\equiv t \pmod r$, or $t,i\ge r$, $j\le r-1$, and $ i+j\equiv t \pmod r$; and 0 in the remaining cases, where $|U|=q^2$ if $G=Sz(q)$ and $|U|=q^3$ if $G={^2G}_2(q)$. As a corollary, we find the structural parameters $m_{h_t}(h_i,h_j)=|\{Kx\in \Omega |\ Kx\subseteq Kh_i^{-1}Kh_t\cap Kh_jK\}|$ of the Hecke algebra $\mathbb{C}(K{\setminus}G/K)$ of $G$ with respect to $K$. Namely, we show that $m_{h_t}(h_i,h_j)$ is exactly the intersection number $c_{ij}^t$ of the scheme ${\mathcal X}$ for all $0\le i,j,t\le 2r-1$. By definition, the graph of the basic relation $R_t$ with $t\ge r$ of ${\mathcal X}$ is equivalent to the coset graph $\Gamma(G,K,Kh_tK)$ of $G$ with respect to $K$ and the element $h_t$ and, as is known, is an antipodal distance-regular graph of diameter 3 with intersection array $\{|U|,(|U|-1)(r-1)/r,1;1,(|U|-1)/r,|U|\}$. The latter fact was proved in the author's earlier paper, where we proposed a technique for studying the graphs $\Gamma(G,K,Kh_tK)$; the technique is based on analyzing the mutual distribution of the neighborhoods of vertices. In the present work, we prove the distance regularity of these graphs as a corollary of the properties of the scheme ${\mathcal X}$.
Keywords: Schurian association scheme, distance-regular graph, antipodal graph.
Received: 05.09.2019
Revised: 23.10.2019
Accepted: 28.10.2019
Bibliographic databases:
Document Type: Article
UDC: 512.54+519.17
MSC: 05E30, 05C25
Language: Russian
Citation: L. Yu. Tsiovkina, “Some Schurian association schemes related to Suzuki and Ree groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 4, 2019, 249–254
Citation in format AMSBIB
\Bibitem{Tsi19}
\by L.~Yu.~Tsiovkina
\paper Some Schurian association schemes related to Suzuki and Ree groups
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 4
\pages 249--254
\mathnet{http://mi.mathnet.ru/timm1690}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-4-249-254}
\elib{https://elibrary.ru/item.asp?id=41455541}
Linking options:
  • https://www.mathnet.ru/eng/timm1690
  • https://www.mathnet.ru/eng/timm/v25/i4/p249
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :35
    References:27
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024