Abstract:
We study the stability of coalitions in multicriteria dynamic games. We use the Nash bargaining solution (Nash products) to construct a noncooperative equilibrium and the Nash bargaining solution for the entire planning horizon to find a cooperative solution. Conditions for the internal and external stability are extended to dynamic games with vector payoff functions. The notion of coalitional stability, which takes into account the stimuli for the player to transfer to other coalitions, is introduced. To illustrate the presented approach, we consider a multicriteria dynamic model of bioresource management. Conditions for the internal, external, and coalitional stability are presented.
\Bibitem{Ret19}
\by A.~N.~Rettieva
\paper Coalitional stability conditions in multicriteria dynamic games
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 200--216
\mathnet{http://mi.mathnet.ru/timm1659}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-200-216}
\elib{https://elibrary.ru/item.asp?id=39323549}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2019
\vol 307
\issue , suppl. 1
\pages S99--S115
\crossref{https://doi.org/10.1134/S0081543819070083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485178300017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078538993}
Linking options:
https://www.mathnet.ru/eng/timm1659
https://www.mathnet.ru/eng/timm/v25/i3/p200
This publication is cited in the following 3 articles:
Denis V. Kuzyutin, Nadezhda V. Smirnova, Igor R. Tantlevskii, “Mnogoshagovaya model ispolzovaniya vozobnovlyaemogo resursa igrokami dvukh tipov”, MTIP, 16:1 (2024), 61–77
D. V. Kuzyutin, N. V. Smirnova, I. R. Tantlevskij, “Multistage Model for Renewable Resource Extraction by Players of Two Types”, Dokl. Math., 110:S2 (2024), S445
Anna N. Rettieva, “Dynamic multicriteria games' solutions: classical and untraditional approaches”, Autom. Remote Control, 82:5 (2021), 902–910