Trudy Instituta Matematiki i Mekhaniki UrO RAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Inst. Mat. i Mekh. UrO RAN:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, Volume 25, Number 3, Pages 188–199
DOI: https://doi.org/10.21538/0134-4889-2019-25-3-188-199
(Mi timm1658)
 

This article is cited in 3 scientific papers (total in 3 papers)

Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix

N. N. Petrova, A. Ya. Narmanovb

a Udmurt State University, Mathematical Department
b National University of Uzbekistan named after Mirzo Ulugbek,
Full-text PDF (228 kB) Citations (3)
References:
Abstract: A problem of pursuing a group of evaders by a group of pursuers with equal capabilities of all the participants is considered in a finite-dimensional Euclidean space. The system is described by the equation
$$ D^{(\alpha)}z_{ij}=az_{ij}+u_i-v_j, \ \ u_i, v_j \in V, $$
where $D^{(\alpha)}f$ is the Caputo fractional derivative of order $\alpha$ of the function $f$, the set of admissible controls $V$ is strictly convex and compact, and $a$ is a real number. The aim of the group of pursuers is to capture at least $q$ evaders; each evader must be captured by at least $r$ different pursuers, and the capture moments may be different. The terminal set is the origin. Assuming that the evaders use program strategies and each pursuer captures at most one evader, we obtain sufficient conditions for the solvability of the pursuit problem in terms of the initial positions. Using the method of resolving functions as a basic research tool, we derive sufficient conditions for the solvability of the approach problem with one evader at some guaranteed instant. Hall's theorem on a system of distinct representatives is used in the proof of the main theorem.
Keywords: differential game, group pursuit, multiple capture, pursuer, evader, fractional derivative.
Funding agency Grant number
Russian Foundation for Basic Research 18-51-41005
Ministry of Innovative Development of the Republic of Uzbekistan MRU-10/17
The research of the first and second authors was supported by the Russian Federation for Basic Research (project no. 18-51-41005) and by Grant MRU-10-17 (Uzbekistan), respectively.
Received: 06.05.2019
Revised: 19.06.2019
Accepted: 24.06.2019
English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2020, Volume 309, Issue 1, Pages S105–S115
DOI: https://doi.org/10.1134/S0081543820040136
Bibliographic databases:
Document Type: Article
UDC: 517.977
MSC: 49N79, 49N70, 91A24
Language: Russian
Citation: N. N. Petrov, A. Ya. Narmanov, “Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 3, 2019, 188–199; Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S105–S115
Citation in format AMSBIB
\Bibitem{PetNar19}
\by N.~N.~Petrov, A.~Ya.~Narmanov
\paper Multiple Capture of a Given Number of Evaders in a Problem with Fractional Derivatives and a Simple Matrix
\serial Trudy Inst. Mat. i Mekh. UrO RAN
\yr 2019
\vol 25
\issue 3
\pages 188--199
\mathnet{http://mi.mathnet.ru/timm1658}
\crossref{https://doi.org/10.21538/0134-4889-2019-25-3-188-199}
\elib{https://elibrary.ru/item.asp?id=39323548}
\transl
\jour Proc. Steklov Inst. Math. (Suppl.)
\yr 2020
\vol 309
\issue , suppl. 1
\pages S105--S115
\crossref{https://doi.org/10.1134/S0081543820040136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000485178300016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078523023}
Linking options:
  • https://www.mathnet.ru/eng/timm1658
  • https://www.mathnet.ru/eng/timm/v25/i3/p188
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Instituta Matematiki i Mekhaniki UrO RAN
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :67
    References:38
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024